Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 727
HISTORICAL
2000-06-01
Standard
AIR860A
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only. No attempt has been made to develop the complete electrical circuitry associated with the electrical heating components; however, the electrical circuitry required for heating component operation, safety, and monitoring will be included as available. Specific design information is given for various modern aircraft utilizing electrical heating. Each aircraft discussed will be identified by alphabetical letter designation and included in the appropriate appendix.
HISTORICAL
1965-01-10
Standard
AIR860
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only.
CURRENT
2011-10-17
Standard
AIR860B
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only. No attempt has been made to develop the complete electrical circuitry associated with the electrical heating components; however, the electrical circuitry required for heating component operation, safety, and monitoring will be included as available. Specific design information is given for various modern aircraft utilizing electrical heating. Each aircraft discussed will be identified by alphabetical letter designation and included in the appropriate appendix.
HISTORICAL
2003-01-11
Standard
AIR910B
The purpose of this report is to provide information on ozone, its effects, generally accepted ozone exposure limits (aviation and non-aviation), and methods of its control in high altitude aircraft. Sources of information are listed and referenced in the text.
HISTORICAL
1996-07-01
Standard
AIR910A
The purpose of this report is to provide information on ozone and its control in high altitude aircraft environmental systems. Sources of this information are listed in the selected bibliography appearing at the end of this report, to which references are made throughout.
CURRENT
2011-10-17
Standard
AIR910C
The purpose of this report is to provide information on ozone, its effects, generally accepted ozone exposure limits (aviation and non-aviation), and methods of its control in high altitude aircraft. Sources of information are listed and referenced in the text.
HISTORICAL
1965-11-01
Standard
AIR910
The purpose of this report is to provide information on ozone and its control in high altitude aircraft environmental systems. Sources of this information are listed in the selected bibliography appearing at the end of this report, to which references are made throughout.
CURRENT
1969-08-01
Standard
AIR992
HISTORICAL
1984-10-01
Standard
AIR975
In efforts to increase the accuracy and reliability of altimetry, speed measurement and other aspects of air data, a great deal of attention and money have been expended on new and refined pressure transducing and computing systems and on the standards by which they are calibrated. So much progress has been made in this that the limiting factor is, or may soon be, the sensing and transmitting in the aircraft of the pressures to be transduced. Until the appearance of References 1-13 and 18 there was little guidance available on the maintenance of pitot and static systems. This report presents what information is available, suggests limits, and lists the principal original papers on the subject.
CURRENT
1996-09-01
Standard
AIR975A
In efforts to increase the accuracy and reliability of altimetry, speed measurement and other aspects of air data, a great deal of attention and money have been expended on new and refined pressure transducing and computing systems and on the standards by which they are calibrated. So much progress has been made in this that the limiting factor is, or may soon be, the sensing and transmitting in the aircraft of the pressures to be transduced. Until the appearance of References 1-13 and 18 there was little guidance available on the maintenance of pitot and static systems. This report presents what information is available, suggests limits, and lists the principal original papers on the subject.
CURRENT
2017-01-05
Standard
AIR5661A
This SAE Aerospace Information Report (AIR) provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
HISTORICAL
2010-02-12
Standard
AIR5661
This report provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
HISTORICAL
1978-07-01
Standard
AIR806A
The report presents air conditioning data for aircraft cargo which is affected by temperature, humidity, ventilation rate and atmospheric pressure. The major emphasis is on conditioning of perishable products and warm-blooded animals. The report also covers topics peculiar to cargo aircraft or which are related to the handling of cargo.
CURRENT
1984-03-01
Standard
AIR795A
This report is limited to the special problems of air quantity, purity, movement, pressure, temperature, and humidity which arise from the requirements of the human body during high altitude flight, together with the associated aircraft design problems.
HISTORICAL
1975-04-15
Standard
AIR795
HISTORICAL
1964-02-01
Standard
AIR805
The purpose of this information report is to present factors which affect the design and development of jet blast windshield rain removal systems for commercial transport aircraft. A satisfactory analytical approach to the design of these systems has not yet been developed. Although detailed performance data are available for some test configurations, rain removal systems will generally be unique to specific aircraft. This, then, requires a preliminary design for the system based on available empirical data to be followed with an extensive laboratory development program.
CURRENT
1976-01-06
Standard
AIR82
CURRENT
2001-07-01
Standard
AIR818D
This Aerospace Standard, (AS), specifies minimum performance standards for _____________ (Instrument or instrument systems) which are primarily intended for use with (vehicles capable of flight), ((fixed wing, rotary wing) aircraft)), (other special modifiers); (and whose purpose is to display _____________ information).
HISTORICAL
1981-01-15
Standard
AIR818C
This AS covers __________ which measure and display __________ or This AS covers __________ basic types of (no capitals) instruments as follows: Note: Each type number to be followed by a brief description as it would if the scope were covering only a single type. As many types as required may be used.
HISTORICAL
1966-08-01
Standard
AIR818A
This Aerospace Information Report, (AIR) is intended to provide the sponsors of Aerospace Standards, (AS), with standard wording, formatting, and minimum environment and design requirements for use in the preparation of their document. The individual shall use only those parts of this AIR which apply to their particular document. The individual sponsor may expand the standard wording, especially under Sections 4, 5, and 6 as required. The paragraphs of this AIR shall be used verbatim wherever possible. Unless otherwise directed by SAE, cross referenced documents shall be called out by specific revision letter, e.g. "shall be in accordance with AS XXXXB." In addition, all non-SAE documents called out shall include the document title when initially identified. However, every effort shall be made to keep cross-referencing to an absolute minimum.
HISTORICAL
1963-03-01
Standard
AIR818
This Aerospace Information Report, (AIR) is intended to provide the sponsors of Aerospace Standards, (AS), with standard wording, formatting, and minimum environment and design requirements for use in the preparation of their document. The individual shall use only those parts of this AIR which apply to their particular document. The individual sponsor may expand the standard wording, especially under Sections 4, 5, and 6 as required. The paragraphs of this AIR shall be used verbatim wherever possible. Unless otherwise directed by SAE, cross referenced documents shall be called out by specific revision letter, e.g. 'shall be in accordance with AS XXXXB.' In addition, all non-SAE documents called out shall include the document title when initially identified. However, every effort shall be made to keep cross-referencing to an absolute minimum.
HISTORICAL
1972-01-01
Standard
AIR818B
This Aerospace Standard covers ____________________ or SCOPE This Aerospace Standard covers ____________________ basic types of (no capitals) instruments as follows: NOTE: Each type number to be followed by a brief description. As many types as required may be used.
HISTORICAL
1970-10-01
Standard
AIR64A
This publication formalizes the applicable design concepts considered acceptable for "draw-through" cooling of electronic (avionic) equipment installed in subsonic and supersonic commercial jet transports. Methods other than draw-through cooling are covered in AIR 728A for high Mach number aircraft.
CURRENT
1992-09-01
Standard
AIR64B
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. In instances where these two locations result in different requirements, these are identified. For purposes of this document, the cooled equipment is referred to generally as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. This document primarily relates to E/E equipment which is designed to use forced air cooling in order to maintain the equipment within acceptable environmental limits, in order to maintain equipment operating performance (within acceptable tolerances), and to maintain reliability. Cooling may be applied internally or externally to the case of the item of E/E equipment.
HISTORICAL
1986-10-01
Standard
AIR1706A
Many different computer programs have been developed to determine performance capabilities of aircraft environmental control systems, and to calculate size and weight tradeoffs during preliminary design. Many of these computer programs are limited in scope to a particular arrangement of components for a specific application. General techniques, providing flexibility to handle varied types of ECS configurations and different requirements (i.e., during conceptual or preliminary design, development, testing, production, and operation) are designated "company proprietary" and are not available for industry-wide use. This document describes capabilities, limitations, and potentials of a particular computer program which provides a general ECS analysis capability, and is available for use in industry. This program, names AECS1, was developed under the sponsorship of the U.S. Air Force Flight Dynamics Laboratory (References 1 and 2).
HISTORICAL
2011-02-10
Standard
AIR1706
This document has been declared “CANCELLED” as of January 2010. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index.
HISTORICAL
1997-10-01
Standard
AIR1706B
Many different computer programs have been developed to determine performance capabilities of aircraft environmental control systems, and to calculate size and weight tradeoffs during preliminary design. Many of these computer programs are limited in scope to a particular arrangement of components for a specific application. General techniques, providing flexibility to handle varied types of ECS configurations and different requirements (i.e., during conceptual or preliminary design, development, testing, production, and operation) are designated “company proprietary” and are not available for industry-wide use. This document describes capabilities, limitations, and potentials of a particular computer program which provides a general ECS analysis capability, and is available for use in industry. This program, names AECS1, was developed under the sponsorship of the U.S. Air Force Flight Dynamics Laboratory (References 1 and 2).
CURRENT
2010-01-08
Standard
AIR1706C
This document has been declared “CANCELLED” as of January 2010. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index.
CURRENT
2005-02-09
Standard
AIR4766/2
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Airborne contaminant gases, vapors, and aerosols. Identified potential sources. Comfort, health and safety issues. Airborne chemical measurement. Regulations and standards. Operating conditions and equipment that may cause aircraft cabin contamination by airborne chemicals (including Failure Conditions and normal Commercial Practices). Airborne chemical control systems. It does not deal with airflow requirements.
Viewing 1 to 30 of 727

Filter

  • Standard
    727
  • Range:
    to:
  • Year: