Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 1285
HISTORICAL
2007-02-21
Standard
AIR5683
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
CURRENT
2016-10-21
Standard
AIR5683A
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
HISTORICAL
2007-05-09
Standard
AIR5682
CLARA identifies four functions: Data Space Generator, Truth Data Generator, Coefficient Generator, and Reconstructor. Together these four functions standardize the solution to the LAR problem. This ICD defines the logical interfaces of the four functions.
CURRENT
2012-08-27
Standard
AIR5682A
CLARA identifies four functions: Data Space Generator, Truth Data Generator, Coefficient Generator, and Reconstructor. Together these four functions standardize the solution to the LAR problem. This ICD defines the logical interfaces of the four functions.
HISTORICAL
2005-05-20
Standard
AIR5788
This document specifies the CLARA interfaces of the CLAR Truth Data Generator as shown in Figure 1. The solid bold arrows are defined in Table 1 and Table 2. The dashed arrows from the CLAR Coefficient Generator and Truth Database to the CLAR Data Space Generator indicate a feedback loop and are defined in the CLAR Data Space Generator ICD (Reference 1). The dashed arrow from the Truth Database to the CLAR Coefficient Generator is defined in the CLAR Coefficient Generator ICD (Reference 2). The objective for the CLAR Truth Data Generator is to produce impact data sets to be used in the CLAR Coefficient Generator first to score and form LAR boundaries, and then to generate coefficients. A model of the weapon system that predicts weapon delivery performance to a predefined accuracy is to be used for this purpose. The model can be the Six-Degree-Of-Freedom (6DOF) equations of motion or another mathematical representation that meets the objective for the weapon system LAR.
CURRENT
2002-04-01
Standard
AIR5784
There has been a recent upsurge in interest from the media concerning the quality of the environment within aircraft cabins and cockpits especially in the commercial world1-4. This has included (although by no means been limited to) the air quality, with particular reference to the alleged effects of contamination from the aircraft turbine lubricant. Possible exposure to ‘organophosphates’ (OPs) from the oil has raised special concerns from cabin crew. Such is the concern that government organisations around the world, including Australia, USA and UK, have set up committees to investigate the cabin air quality issue. Concern was also voiced in the aviation lubricants world at the way in which OP additives in turbine lubricants were being blamed in some reports for the symptoms being experienced by air crew and passengers. SAE Committee E-34 therefore decided that it should gather as much available information on the subject as possible.
CURRENT
2012-08-27
Standard
AIR5788A
This document specifies the CLARA interfaces of the CLAR Truth Data Generator as shown in Figure 1. The solid bold arrows are defined in Table 1 and Table 2. The dashed arrows from the CLAR Coefficient Generator and Truth Database to the CLAR Data Space Generator indicate a feedback loop and are defined in the CLAR Data Space Generator ICD (Reference 1). The dashed arrow from the Truth Database to the CLAR Coefficient Generator is defined in the CLAR Coefficient Generator ICD (Reference 2). The objective for the CLAR Truth Data Generator is to produce impact data sets to be used in the CLAR Coefficient Generator first to score and form LAR boundaries, and then to generate coefficients. A model of the weapon system that predicts weapon delivery performance to a predefined accuracy is to be used for this purpose. The model can be the Six-Degree-Of-Freedom (6DOF) equations of motion or another mathematical representation that meets the objective for the weapon system LAR.
HISTORICAL
2008-01-16
Standard
AIR5720
The technical architecture defined in this document outlines mandatory, emerging, and needed standards to provide interoperability at key interfaces in the aircraft/store system (including an associated NATO Network Enabled Capability environment), as required to support a future plug-and-play aircraft/store integration capability. These standards relate to services and protocols associated with the subject interfaces. Modeling standards to facilitate the Model Driven Architecture® (MDA®) approach to system definition and implementation are also included. Note that the status of referenced standards as reflected in this document is as of August 2007, and document users should check to see if there has been a subsequent change of status relative to applicable standards.
CURRENT
2008-06-18
Standard
AIR5747
This paper contains RF radiated emission and susceptibility data from passive Radio Frequency Identification (RFID) tags and readers operating at 13.56 MHz, 915 MHz, and 2.45 GHz. Laboratory test procedures incorporated the methods of RTCA DO-160D (test procedures for aviation electrical/electronic equipment) and DO-233 (test procedures for consumer portable electronic devices (PEDs)). Only one commercially available system was evaluated per established operating frequencies.
CURRENT
2012-08-27
Standard
AIR5720A
The technical architecture defined in this document outlines mandatory, emerging, and needed standards to provide interoperability at key interfaces in the aircraft/store system (including an associated NATO Network Enabled Capability environment), as required to support a future plug-and-play aircraft/store integration capability. These standards relate to services and protocols associated with the subject interfaces. Modeling standards to facilitate the Model Driven Architecture® (MDA®) approach to system definition and implementation are also included. Note that the status of referenced standards as reflected in this document is as of August 2007, and document users should check to see if there has been a subsequent change of status relative to applicable standards.
CURRENT
2017-05-24
Standard
AIR5742A
The scope of this document is related to the particular needs of oxygen equipment with regards to packaging and transportation. The document provides guidance for handling chemical, gaseous and liquid oxygen equipment. It summarizes national and international regulations to be taken into account for transportation on land, sea and air and provides information on classification of hazardous material. The aim of this document is to summarize information on packaging and transportation of oxygen equipment. Statements and references to regulations cited herein are for information only and should not be considered as interpretation of a law. Processes to maintain cleanliness of components and subassemblies during processing and assembly or storage of work-in-progress are outside the scope of this document. Guidance on this can be obtained from ARP1176.
CURRENT
2012-08-27
Standard
AIR5712A
This document was developed by the SAE AS-1B5 CLARA Task Group to explain and document background information and decisions with associated rationale made in development of the CLARA Interface Control Document (ICD), AIR5682. This rationale document is published separately to preserve information that is not required or provided in the ICD but may be important to users.
HISTORICAL
2008-10-23
Standard
AIR5712
This document was developed by the SAE AS-1B5 CLARA Task Group to explain and document background information and decisions with associated rationale made in development of the CLARA Interface Control Document (ICD), AIR5682. This rationale document is published separately to preserve information that is not required or provided in the ICD but may be important to users.
HISTORICAL
2010-07-01
Standard
AIR5919A
This SAE Aerospace Information Report (AIR) is intended to document and provide access to information obtained by an industry survey. It summarizes and documents data regarding possible alternatives to the use of cadmium plating on general connectors and connector accessories typically used in aerospace and military defense electrical interconnect systems.
CURRENT
1986-12-01
Standard
AIR1939
AIR 1939 addresses communication of LCC data between equipment suppliers, aircraft engine producers, aircraft manufacturers, and users, as illustrated in Figure 1. The LCC data categories addressed include: research, development, test and evaluation (RDT&E); acquisition (initial procurement and investment); and operating and support (O&S) costs. While input and output formats are suggested, calculation procedures and cost methodology are specifically excluded since many LCC models preferred by the industry are company sensitive or proprietary (Figure 1). The relationship of LCC input data to program phase is described. Ground rules and assumptions are addressed. A glossary of LCC terms is provided. The LCC impact of propulsion systems on other aircraft systems is considered. This document was specifically developed for military propulsion system cost analysis.
CURRENT
2011-12-16
Standard
AIR6110
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system.
CURRENT
2017-06-27
Standard
AIR6027A
The information presented in this AIR is intended to provide designers of armed unmanned systems with guidelines that may be applied to ensure safe integration and operation of weapons on unmanned platforms. The guidelines have been developed from experiences gained in the design and operation of weapons on manned aircraft that have been accepted by relevant safety authorities in the USA and Europe and proven effective over many years. Whilst the guidelines have been developed from experience with aircraft operations, the concepts are considered equally applicable to non-aircraft systems, such as those used on the surface or undersea environments. This document does not attempt to define or describe a comprehensive safety program for unmanned systems. System Safety is a system characteristic and a non-functional requirement. It has to be addressed at each level of system design, system integration and during each phase of system operation.
HISTORICAL
2012-05-03
Standard
AIR6027
The information presented in this AIR is intended to provide designers of armed unmanned systems with guidelines that may be applied to ensure safe integration and operation of weapons on unmanned platforms. The guidelines have been developed from experiences gained in the design and operation of weapons on manned aircraft that have been accepted by relevant safety authorities in the USA and Europe and proven effective over many years. Whilst the guidelines have been developed from experience with aircraft operations, the concepts are considered equally applicable to non-aircraft systems, such as those used on the surface or undersea environments. This document does not attempt to define or describe a comprehensive safety program for unmanned systems. System Safety is a system characteristic and a non-functional requirement. It has to be addressed at each level of system design, system integration and during each phase of system operation.
CURRENT
2009-12-29
Standard
AIR6004
CURRENT
2004-01-13
Standard
AIR5995
This report identifies the reasons for, and results associated with, the conduct of a flight simulation research project evaluating the effect of low powered laser beam illumination of pilot crewmembers operating in the navigable airspace. This evaluation was primarily concerned with the possible degradation of pilot performance when illuminated by a laser while operating in an airport terminal area where pilot workloads are normally at their maximum.
HISTORICAL
2012-04-19
Standard
AIR6211
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with a relative ice penetration capacity of runway deicing/anti-icing chemicals, by measuring the ice penetration as a function of time. Such runway deicing/anti-icing chemicals are often also used on taxiways and other paved areas. This test method does not quantitatively measure the theoretical or extended time of ice penetration capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
HISTORICAL
2012-02-07
Standard
AIR6172
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with relative ice undercutting capacity of runway deicing chemicals, by measuring the area of ice undercut pattern as a function of time. Such runway deicing chemicals are often also used on taxiways. This test method does not quantitatively measure the theoretical or extended time of ice undercutting capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
HISTORICAL
2012-01-24
Standard
AIR6170
This test method provides stakeholders (runway deicing chemical manufacturers, deicing/anti-icing chemical operators and airport authorities) with relative ice melting capacity of runway deicing chemicals, by measuring the amount of ice melted as a function of time. Such runway deicing chemicals are often also used on taxiways. This test method does not quantitatively measure the theoretical or extended time ice melting capability of ready-to-use runway deicing/anti-icing chemicals in liquid or solid form.
CURRENT
1999-03-01
Standard
AIR5279
This document provides recommendations concerning the minimum knowledge and skill guidelines for a composite and metal bond repair inspector. Teaching levels have been assigned to this curriculum to define the knowledge, skills and abilities needed to inspect repairs. Minimum hours of instruction have been provided to ensure adequate lecture and laboratory coverage of all subject matter. These minimums may be exceeded, and may include an increase in the total number of training hours and/or increases in the teaching levels.
CURRENT
1999-03-01
Standard
AIR5278
This document provides recommendations concerning the minimum knowledge and analytical skill guidelines for a composite and metal bond repair design engineer. Teaching levels have been assigned to this curriculum to define the knowledge, skills and abilities needed to design appropriate repairs. Minimum hours of instruction have been provided to ensure adequate lecture and laboratory coverage of all subject matter. These minimums may be exceeded, and may include an increase in the total number of training hours and/or increases in the teaching levels.
CURRENT
1999-08-01
Standard
AIR5387
This SAE Aerospace Information Report (AIR) is intended to cover all airport 50 or 60 Hz electrical systems as well as all electrical utilization equipment that is attached to those systems.
CURRENT
2016-08-19
Standard
AIR5354A
The following is the history of SAE Committee A-10.
CURRENT
2014-12-05
Standard
AIR5444A
This SAE Aerospace Information Report (AIR) shall be limited to general information about tin whisker formation on tin plated conductors. It summarizes the mechanisms of metal whisker formation and describes possible conclusions as related to tin plated conductors. It also provides a number of reference documents that describes research and observations of the whisker phenomena, recommendations to prevent its formation and conclusions. The investigation by this task group of AE-8D was initiated by a request of the Naval Air Warfare Center, Indianapolis, Indiana, to determine if the phenomenon of tin whiskers is a problem in aerospace wire and cable.
CURRENT
2017-07-12
Standard
AIR5451A
The landing gear system is a major and safety critical airframe system that needs to be integrated efficiently to meet the overall aircraft program goals of minimizing the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large-scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft. The document structure is divided into four sections: Landing Gear System Configuration Requirements (Section 3) Landing Gear System Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear System Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements.
CURRENT
1998-12-01
Standard
AIR1898A
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/ maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
Viewing 1 to 30 of 1285

Filter

  • Standard
    1285
  • Range:
    to:
  • Year: