Criteria

Text:
Content:
Topic:
Display:

Results

Viewing 1 to 30 of 532
CURRENT
2017-06-20
Standard
AIR4844C
The following terminology has been generated by the ATA/IATA/SAE Commercial Aircraft Composite Repair Committee (CACRC) and provides terminology for design, fabrication, and repair of composite and bonded metal structures.
CURRENT
1986-12-18
Standard
ARIR612
The purpose of this standard is to provide a source of definitions of terms and acronyms commonly used in the air transport maintenance community for test and evaluation with an emphasis on terms applicable to BITE.
CURRENT
1998-01-04
Standard
ARIR613
In 1986 the airlines selected Ada as the high-order development language for avionics. ARINC 613 describes the Ada domain most suited for avionics software development. The standard provides valuable guidance to Ada compiler developers and Ada programmers.
CURRENT
2017-11-29
Standard
ARIR605
This guide has been written as an applications manual for writing avionics test specifications that conform to ARINC Specification 616. It provides advice for converting ATLAS test specifications into ATLAS test programs and implementing them on Automatic Test Equipment (ATE).This guide has been written as an applications manual for writing avionics test specifications that conform to ARINC Specification 616. It provides advice for converting ATLAS test specifications into ATLAS test programs and implementing them on Automatic Test Equipment (ATE).
CURRENT
2014-12-18
Standard
ARP210A
"Hot Day ", "Tropical Day ", "Standard Day ", "Polar Day " and "Cold Day " are part of the lexicon of the aircraft industry. These terms are generally understood to refer to specific, generally accepted characteristics of atmospheric temperature versus pressure altitude. There are also other, less well-known days, defined by their frequency of occurrence, such as "1% Hot Day ", "10% Cold Day ", or "Highest Recorded Day ". These temperature characteristics have their origins in multiple sources, including U.S. military specifications which are no longer in force.
CURRENT
2017-07-18
Standard
ARP4386D
This SAE Aerospace Recommended Practice (ARP) provides the technical terms and nomenclature, together with their definitions and abbreviations/acronyms that are used in aerospace fluid power, actuation and control systems. NOTE: ARP490 and ARP4493 are sources for definitions specifically for electrohydraulic servovalves.
CURRENT
2009-12-29
Standard
AIR6004
HISTORICAL
1995-07-01
Standard
J1113/1_199507
This SAE Standard covers the measurement of voltage transient immunity, and within the applicable frequency ranges, audio (af) and radio frequency (rf) immunity, and conducted and radiated emissions. Emissions from intentional radiators are not controlled by this document. (See applicable appropriate regulatory documents.) The immunity of commercial mains powered equipment to over voltages and line transients is not covered by this document. (See applicable UL or other appropriate agency documents.).
HISTORICAL
2002-04-30
Standard
J1113/1_200204
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. Emissions from intentional radiators are not controlled by this document. (See applicable appropriate regulatory documents.) The immunity of commercial mains powered equipment to over voltages and line transients is not covered by this document.
HISTORICAL
2012-03-23
Standard
J1113/1_201203
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, and SAE J1113-42, respectively. In the event that an amendment is made or a new edition is published, the new ISO document shall become part of this standard six months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, and SAE J1113-42 respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
CURRENT
2013-10-01
Standard
J1113/1_201310
This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, ISO 11452-3, ISO 11452-7, ISO 11452-8, ISO 11452-10, ISO 11452-11, ISO 11452-2 and the emissions portion of ISO 7637-2 are adopted in place of SAE J1113-24, SAE J1113-3 , SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42, respectively. In the event that an amendment is made or a new edition is published, the new ISO document shall become part of this standard six months after the publication of the ISO document. SAE reserves the right to identify exceptions to the published ISO document with the exceptions to be documented in SAE J1113-24, SAE J1113-3, SAE J1113-22, SAE J1113-2, SAE J1113-28, SAE J1113-21 and SAE J1113-42 respectively. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions.
HISTORICAL
2006-10-13
Standard
J1113/1_200610
SCOPE This SAE Standard covers the measurement of voltage transient immunity and within the applicable frequency ranges, audio (AF) and radio frequency (RF) immunity, and conducted and radiated emissions. By reference, IEC CISPR 25 is adopted as the standard for the measurement of component emissions. In the event that an Amendment is made to the referenced edition of CISPR 25 or a new edition is published, the new IEC document shall become part of this standard six months after the publication of the IEC document. SAE reserves the right to identify exceptions to the published IEC document with the exceptions to be documented in SAE J1113-41. Emissions from intentional radiators are not controlled by this document. (See applicable appropriate regulatory documents.) The immunity of commercial mains powered equipment to over voltages and line transients is not covered by this document.
HISTORICAL
1994-02-05
Standard
J1112_199402
This SAE Standard establishes definitions of specifications most commonly associated with grapple skidders. Specifications common to all articulated, rubber-tired log skidders are included in SAE J1110. The dimensions included in this document are basic and may be supplemented by the individual machine manufacturer. Dimensions shall be stated in SI units. Illustrations used herein are not intended to include all existing commercial machines or to be exactly descriptive of any particular machine. They have been included to facilitate application of this document.
CURRENT
2003-11-03
Standard
J1112_200310
This SAE Standard establishes definitions of specifications most commonly associated with grapple skidders. Specifications common to all articulated, rubber-tired log skidders are included in SAE J1110. The dimensions included in this document are basic and may be supplemented by the individual machine manufacturer. Dimensions shall be stated in SI units. Illustrations used herein are not intended to include all existing commercial machines or to be exactly descriptive of any particular machine. They have been included to facilitate application of this document.
2015-04-19
WIP Standard
J1115
Historically SAE has been concerned with nomenclature as an integral part of the standards development process. Guidelines for automotive nomenclature were written in 1916, were last revised in 1941, and were included in the SAE Handbook until 1962. The present diversity of groups working on nomenclature in the various ground vehicle committees led to the organization of the Nomenclature Advisory Committee under SAE Automotive Council.
CURRENT
2016-08-02
Standard
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
HISTORICAL
2006-09-12
Standard
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
CURRENT
2012-05-29
Standard
J1124_201205
Over the years during which fluid filtration systems have been developing, many terms have come into use for descriptions of characteristics of filter media, filter assemblies, test methods, and test materials. Inevitably, some terms have been applied loosely, so that the same term may have different meaning to different people, or in different frames of reference. Recognizing the need for clearly defined terms, which can have only one meaning for all persons in all circumstances, so that documents dealing with standard methods of evaluation of filters will have only one interpretation, the Filter Test methods Subcommittee of the SAE Engine Committee has compiled this Glossary of related terms. No attempt has been made to produce an all-inclusive document, containing definitions of all terms related to all types of fluid filters. Instead, the Glossary is confined to the terms likely to be encountered in relation to filters for lubricating oil and fuels.
HISTORICAL
1987-03-01
Standard
J1124_198703
Over the years during which fluid filtration systems have been developing, many terms have come into use for descriptions of characteristics of filter media, filter assemblies, test methods, and test materials. Inevitably, some terms have been applied loosely, so that the same term may have different meaning to different people, or in different frames of reference. Recognizing the need for clearly defined terms, which can have only one meaning for all persons in all circumstances, so that documents dealing with standard methods of evaluation of filters will have only one interpretation, the Filter Test Methods Subcommittee of the SAE Engine Committee has compiled this Glossary of related terms. No attempt has been made to produce an all-inclusive document, containing definitions of all terms related to all types of fluid filters. Instead, the Glossary is confined to the terms likely to be encountered in relation to filters for lubricating oil and fuels.
HISTORICAL
1976-06-01
Standard
J1124_197606
Over the years during which fluid filtration systems have been developing, many terms have come into use for descriptions of characteristics of filter media, filter assemblies, test methods, and test materials. Inevitably, some terms have been applied loosely, so that the same term may have different meaning to different people, or in different frames of reference. Recognizing the need for clearly defined terms, which can have only one meaning for all persons in all circumstances, so that documents dealing with standard methods of evaluation of filters will have only one interpretation, the Filter Test Methods Subcommittee of the SAE Engine Committee has compiled this Glossary of related terms. No attempt has been made to produce an all-inclusive document, containing definitions of all terms related to all types of fluid filters. Instead, the Glossary is confined to the terms likely to be encountered in relation to filters for lubricating oil and fuels.
HISTORICAL
1976-11-01
Standard
J111B_197611
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
HISTORICAL
1979-04-01
Standard
J111C_197904
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
HISTORICAL
1995-07-01
Standard
J111_199507
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
HISTORICAL
1988-06-01
Standard
J111_198806
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
HISTORICAL
1988-07-01
Standard
J1121_198807
This recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
HISTORICAL
1997-05-01
Standard
J111_199705
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
HISTORICAL
1975-11-01
Standard
J1121_197511
This recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
CURRENT
2002-10-25
Standard
J111_200210
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals.
HISTORICAL
1975-05-01
Standard
J1111_197505
This SAE Standard characterizes grapple skidders and identifies the major components and parts most commonly associated therewith. Illustrations used herein are not intended to include all existing commercial machines or to be exactly descriptive of any particular machine. They have been included to facilitate application of this document.
Viewing 1 to 30 of 532

Filter

  • Standard
    532
  • Range:
    to:
  • Year: