Criteria

Text:
Content:
Display:

Results

Viewing 1 to 30 of 557
2016-10-11
WIP Standard
AIR5713A
An industry survey has been completed to determine the incidence of jam and excessive backlash in rotary and linear mechanical actuators subject to "primary flight control like" duty cycles. The data is valuable for understanding how existing mechanical actuators behave in service, identifying areas for potential improvement and possibly being used as a reference to support future primary flight control system trade-off studies.
CURRENT
2008-07-15
Standard
AIR5713
An industry survey has been completed to determine the incidence of jam and excessive backlash in rotary and linear mechanical actuators subject to “primary flight control like” duty cycles. The data is valuable for understanding how existing mechanical actuators behave in service, identifying areas for potential improvement and possibly being used as a reference to support future primary flight control system trade-off studies.
CURRENT
2002-12-16
Standard
AIR17
CURRENT
2011-09-21
Standard
AIR6052
The purpose of this AIR is to provide a comprehensive description document that displays various examples of transport and business aircraft systems driving Trimmable Horizontal Stabilizers. The main focus is on mechanical systems which may be actuated hydraulically or electrically. The document is intended as an overview for those specifying or designing Horizontal Stabilizer Trim Actuators in order to compare existing solutions as reference for implementation in new aircraft programs.
2013-05-05
WIP Standard
AIR5273A
This AIR provides descriptions of aircraft actuation system failure-detection methods. The methods are those used for ground and in-flight detection of failures in electrohydraulic actuation systems for primary flight control. The AIR concentrates on full Fly-By-Wire (FBW) flight control actuation though it includes one augmented-control system. The background to the subject is discussed in terms of the impact that factors such as the system architecture have on the detection methods chosen for the flight control system. The types of failure covered by each monitoring technique are listed and discussed in general. The way in which these techniques have evolved is illustrated with a historical review of the methods adopted for a series of aircraft, arranged approximately in design chronological order.
CURRENT
2001-12-20
Standard
AIR5273
This AIR provides descriptions of aircraft actuation system failure-detection methods. The methods are those used for ground and in-flight detection of failures in electrohydraulic actuation systems for primary flight control. The AIR concentrates on full Fly-By-Wire (FBW) flight control actuation though it includes one augmented-control system. The background to the subject is discussed in terms of the impact that factors such as the system architecture have on the detection methods chosen for the flight control system. The types of failure covered by each monitoring technique are listed and discussed in general. The way in which these techniques have evolved is illustrated with an historical review of the methods adopted for a series of aircraft, arranged approximately in design chronological order.
CURRENT
2000-09-01
Standard
AIR5428
Modern air vehicles consist of many subsystems, traditionally managed as a federation of independent subsystems. Advances in control technologies, digital electronics and electro-mechanical hardware, provide potential opportunities to integrate subsystems for future aircraft. This document does not define any particular integration strategy. Its purpose is to provide information about traditional federated subsystems from the functional, control, resource, and hardware perspective. To be able to integrate subsystems, one must have a basic understanding of the subsystems, and this document provides an introduction or starting point for initiating the integration process. The focus is on the aircraft subsystems, which includes utility, flight and propulsion control (e.g., electric power, environmental control subsystem (ECS), fuel, etc.) The depth of the information intends to provide an introduction to the subsystems.
CURRENT
2012-11-15
Standard
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
2016-04-25
WIP Standard
AIR6855
This document provides an application guide for electric motors that drive aerospace hydraulic pumps. It provides details of the characteristics of electric motors powered by DC, Fixed Frequency AC, and Variable Frequency AC electrical systems. The applications include both military and commercial aircraft.
HISTORICAL
1964-04-01
Standard
AIR744
This SAE Aerospace Information Report (AIR) is a review of the general characteristics of power sources that may be used to provide secondary, auxiliary, or emergency power for use in aircraft, space vehicles, missiles, remotely piloted vehicles, air cushion vehicles, surface effect ships, or other vehicles in which aerospace technology is used. The information contained herein is intended for use in the selection of the power source most appropriate to the needs of a particular vehicle or system. The information may also be used in the preparation of a power source specification. Considerations for use in making a trade study and an evaluation of the several power sources are included. More detailed information relating to specific power sources is available in other SAE Aerospace Information Reports or in Aerospace Recommended Practices.
2017-04-11
WIP Standard
AIR6920
This AIR is for use by OEM's and Suppliers developing process gate checklists for highly integrated, complex flight control and vehicle management systems to support the life cycle development validation and verification activities prescribed by ARP4754.
HISTORICAL
1989-04-28
Standard
AIR4253
This AIR provides a description of representative state-of-the-art, fly-by-wire (FBW) actuation systems used in flight control systems of manned aircraft. It presents the basic characteristics, hardware descriptions, redundancy concepts, functional schematics, and discussions of the servo controls, failure monitoring, and fault tolerance. All existing FBW actuation systems are not described herein; however, those most representing the latest designs are included. While this AIR is intended as a reference source of information for future aircraft actuation system designs, the exclusion or omission of any other appropriate actuation system or subsystem should not limit consideration of their use on future aircraft.
HISTORICAL
1993-02-26
Standard
AIR4150
This SAE Aerospace Information Report (AIR) is intended for use as a guide in determining the condition of in-service accumulators. A minimum inspection program is recommended to determine the existence of corrosion or damage.
CURRENT
2009-01-06
Standard
AIR4150A
This document has been declared "CANCELLED" as of January 2009 and has been superseded by ARP4150. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by ARP4150.
CURRENT
2013-10-04
Standard
AIR974B
Much of the available long-term storage test data has been reviewed and topically separated to enable the independent discussion of storage effects on fluids, seals, hydraulic components, and hydraulic systems. Comments are made in Section 4 concerning the applicability of the test results and regarding design practices for storability. Conclusions are drawn in Section 5 regarding inactive storage of hydraulic systems for at least a 7 year period.
2014-12-09
WIP Standard
AIR4543/2
This SAE Aerospace Information Report (AIR) contains Lessons Learned from aerospace actuation, control and fluid power systems technologies. The lessons were prepared by engineers from the aerospace industry and government services as part of the work of SAE Committee A-6, Aerospace Actuation, Control and Fluid Power Systems.
HISTORICAL
2011-12-12
Standard
AIR4543/1
This SAE Aerospace Information Report (AIR) contains Lessons Learned from aerospace actuation, control and fluid power systems technologies. The lessons were prepared by engineers from the aerospace industry and government services as part of the work of SAE Committee A-6, Aerospace Actuation, Control and Fluid Power Systems. Each lesson was presented to the appropriate A-6 technical panel. The technical topics are organized into five sections covering systems, actuation, hydraulic components, electrical components and miscellaneous, each further divided into subsections. The information topics are presented in a concise format of Problem, Issue, Solution and Lesson Learned, often with accompanying descriptive diagrams and illustrations for clarity and understanding.
CURRENT
2017-02-23
Standard
AIR4543/1A
This SAE Aerospace Information Report (AIR) contains Lessons Learned from aerospace actuation, control and fluid power systems technologies. The lessons were prepared by engineers from the aerospace industry and government services as part of the work of SAE Committee A-6, Aerospace Actuation, Control and Fluid Power Systems. Each lesson was presented to the appropriate A-6 technical panel. The technical topics are organized into five sections covering systems, actuation, hydraulic components, electrical components and miscellaneous, each further divided into subsections. The information topics are presented in a concise format of Problem, Issue, Solution and Lesson Learned, often with accompanying descriptive diagrams and illustrations for clarity and understanding.
CURRENT
2013-10-04
Standard
AIR4725A
This SAE Aerospace Information Report (AIR) provides design data reliability information relative to the long-term storage of gas containers or pressure vessels charged with nitrogen or helium at pressures ranging from 6000 to 12 000 psi. The gas containers are cylindrical, spherical, or toroidal in shape. Internal volumes range up to 1385 in3. Applications for this type cold gas actuation system include tactical missiles, guided projectiles, and smart bombs. A typical system is described.
CURRENT
2011-03-06
Standard
AMSP83461/2A
The purpose of this specification sheet is to set up a standardized part numbering system for O-rings procured to MIL-P-83461 for use in straight thread tube boss fittings.
CURRENT
2013-04-12
Standard
AMSP5510A
This specification covers requirements for the material, design, testing and packaging of straight thread tube fitting boss O-rings. O-rings covered by this specification are acrylonitrile-butadiene rubber.
HISTORICAL
1998-03-01
Standard
AMSP5510
This specification covers requirements for the material, design, testing and packaging of straight thread tube fitting boss packings.
CURRENT
2013-10-04
Standard
ARP1084A
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide guide lines for allowable leakage for in-service aircraft hydraulic components at a nominal 100 °F (38 °C) temperature and to outline the procedure for measuring such leakage. The limits to be applied to any specific aircraft should be adjusted before inclusion in a maintenance manual.
CURRENT
2002-12-16
Standard
ARP1254
2015-05-04
WIP Standard
ARP5384
This Recommended Practice provides a guide for specifying general design, performance, and test requirements for Power Drive Units (PDUs) for aerospace flight controls or other aerospace applications.
CURRENT
2012-12-12
Standard
ARP4146C
This SAE Aerospace Recommended Practice (ARP) addresses the design, installation, and testing of coiled tube assemblies using Ti-3Al-2.5V cold worked, stress relieved (CWSR) tubing per AMS4945. It specifically details five different configurations of coiled tubing. The configurations detailed herein should be compatible with pressure levels up to 8000 psi (55.2 MPa) upon completion of analysis for the actual stress and life requirement of the intended application. Formal qualification tests are recommended to verify satisfactory installation, clamping, and the life of each unique design. NOTE: For information on design of coiled tube assemblies using CRES steel tubing, see ARP584.
CURRENT
2002-04-05
Standard
ARP5311
This SAE Aerospace Recommended Practice (ARP) defines all the relevant issues that affect the generation of an Interface Control Document for Mechanical Actuation Sub-Systems. It is intended to provide to all parties involved with the generation of Mechanical Actuation Sub-Systems, a definition of documentation, drawings, reports and design parameters required to assure a successful development of mechanical actuation sub-systems for Aerospace-Military and Commercial applications.
2017-10-22
WIP Standard
ARP6001A
This SAE Aerospace Recommended Practice (ARP) provides general requirements for a generic “passive” side stick that could be used for fly by wire transport and business aircraft. It addresses the following: - The functions to be implemented - The geometric and mechanical characteristics - The mechanical and electrical interfaces - The safety and certification requirements
Viewing 1 to 30 of 557

Filter

  • Standard
    557
  • Range:
    to:
  • Year: