Viewing 1 to 4 of 4
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
There are now a wide variety of Hybrid and Electric Vehicles in or near production. They reduce or displace petroleum consumption with of various combinations of conventional IC engine, mechanical transmission, liquid fuel storage, electrical energy storage, electrical and electro-mechanical energy conversion, and vehicle-to-grid energy interface. These Electrified types of vehicles include Mild Hybrid, Full Hybrid, Plug-In Hybrid, Extended Range Electric, and Battery Electric. Some types differ in their actual usability for the real mixes of driving trips, and further that differ in their effectiveness to reduce or displace fuel in actual real world driving use. Vehicle size is also a factor in total vehicle utility in transporting people. If we may segment drivers by their driving needs, in each segment, we see a particular type of electrified vehicle that is better suited than others at minimizing fuel cost and petroleum consumption for the purposes of transporting people.
Hybrid systems have been available for several years now, and offer customers a decrease in fuel consumption and CO2 emissions at an incremental price. Hybrids, in some cases, have offered improved other customer benefits such as reduced noise, vibration and harshness or better acceleration and the satisfaction of increased societal benefit. Sometimes the vehicle utility is compromised by the volume dedicated to energy storage systems. Several hybrid architecture arrangements exist in the market, and offer various levels of hybrid feature. But considering acquisition cost and operating expense, most hybrid vehicles have not offered a direct total cost advantage when compared to non-hybrids. GM's new e-Assist system is highly integrated with the engine and transmission functionality, and takes advantage of the highest value fuel economy enablers available with light electrification.
With the introduction of the Chevrolet Volt, the Electrification of the Automobile begins in earnest, by offering a car that runs off of grid energy that has mass market appeal. The Volt offers a vehicle which is driven primarily by electricity under ?real world? driving conditions, while not presenting the driver with inconvenient choices about range and recharge time, or the disconcerting experience of a real possibility of becoming stranded. The Voltec powertrain arrangement enables the Volt to be an Extended Range Electric Vehicle, or E-REV and gives full performance utilizing only electrical energy from the grid for most driving, and a seamless transition to gasoline energy for longer and less frequent trips to maintain full vehicle utility. General Motors and its suppliers has had to the lead developments of fundamental component technologies that were not addressed by earlier, more simple hybridization work.
Viewing 1 to 4 of 4