Refine Your Search

Topic

Search Results

Technical Paper

Test Results for a Fuel Cell-Powered Demonstration Aircraft

2006-11-07
2006-01-3092
A fuel cell powered airplane has been designed and constructed at the Georgia Insitute of Technology to develop an understanding of the design and implementation challenges of fuel cell-powered unmanned aerial vehicles (UAVs). A custom 448W net output proton exchange membrane fuel cell powerplant has been constructed and tested. A demonstrator aircraft was designed and built to accommodate this powerplant and the fuel cell powered aircraft has performed seven test flights to date. Test data show that the aircraft performance validates the models used for design and optimization and that the fuel cell aircraft is capable of longer endurance, higher performance test flights.
Technical Paper

A Mean Value Based Sizing and Simulation Model of a Hydrogen Fueled Spark-Ignition Internal Combustion Engine

2007-09-17
2007-01-3789
A mean value based sizing and simulation model has been developed for use in the conceptual design and sizing of hydrogen fueled spark-ignition internal combustion engines (HICE) in the aerospace industry, here ‘mean value’ includes mean effective pressure (MEP), mean piston speed, mean specific power, etc. This model is developed since there is currently no such model readily available for this purpose. When sizing the HICE, statistical data and common practice for gasoline internal combustion engines (GICE) are used to obtain preliminary sizes of the HICE, such as total cylinder volume, bore and stroke; to capture the effect of low volumetric efficiency, the preliminary results are adjusted by a volumetric correction factor until the cycle parameters of HICE are reasonable. A non-dimensional combustion model with hydrogen as fuel is incorporated with existing GICE methods. With this combustion model, the high combustion temperature and high combustion pressure are captured.
Technical Paper

A Probabilistic Design Methodology for Commercial Aircraft Engine Cycle Selection

1998-09-28
985510
The objective of this paper is to examine ways in which to implement probabilistic design methods in the aircraft engine preliminary design process. Specifically, the focus is on analytically determining the impact of uncertainty in engine component performance on the overall performance of a notional large commercial transport, particularly the impact on design range, fuel burn, and engine weight. The emphasis is twofold: first is to find ways to reduce the impact of this uncertainty through appropriate engine cycle selections, and second is on finding ways to leverage existing design margin to squeeze more performance out of current technology. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the overall aircraft performance (it is on the same order of magnitude as the impact of the cycle itself).
Technical Paper

A Dynamic Surrogate Model Technique for Power Systems Modeling and Simulation

2008-11-11
2008-01-2887
Heterogeneous physical systems can often be considered as highly complex, consisting of a large number of subsystems and components, along with the associated interactions and hierarchies amongst them. The simulation of a large-scale, complex system can be computationally expensive and the dynamic interactions may be highly nonlinear. One approach to address these challenges is to increase the computing power or resort to a distributed computing environment. An alternative to improve the simulation computational performance and efficiency is to reduce CPU required time through the application of surrogate models. Surrogate modeling techniques for dynamic simulation models can be developed based on Recurrent Neural Networks (RNN).This study will present a method to improve the overall speed of a multi-physics time-domain simulation of a complex naval system using a surrogate modeling technique.
Technical Paper

A General Aviation Aircraft Retrofit with a PEM Fuel Cell

2008-11-11
2008-01-2914
As gas prices and climate change become the preeminent issues of today, more research effort is being directed towards the development of cheaper and cleaner alternative energy sources. These efforts have been further complemented with research into the applicability of these sources to air, land and sea borne vehicles. In this report a notional C-172R general aviation aircraft is retrofitted with a PEM power plant as a case-study. Lower bounds for useful load and range are set in such a way that the results can be useful in determining how much improvement in the technology would be required to power a useful general aviation vehicle. It is seen that even at the predicted 2015 fuel cell technology level (per US Department of Energy projections), PEM systems would still be infeasible for this vehicle due to low specific power. Further investigation revealed that a PEM-battery hybrid system had better chances of feasibility.
Technical Paper

Facilitating the Energy Optimization of Aircraft Propulsion and Thermal Management Systems through Integrated Modeling and Simulation

2010-11-02
2010-01-1787
An integrated, multidisciplinary environment of a tactical aircraft platform has been created by leveraging the powerful capabilities of both MATLAB/Simulink and Numerical Propulsion System Simulation (NPSS). The overall simulation includes propulsion, power, and thermal management subsystem models, which are integrated together and linked to an air vehicle model and mission profile. The model has the capability of tracking temperatures and performance metrics and subsequently controlling characteristics of the propulsion and thermal management subsystems. The integrated model enables system-level trade studies involving the optimization of engine bleed and power extraction and thermal management requirements to be conducted. The simulation can also be used to examine future technologies and advanced thermal management architectures in order to increase mission capability and performance.
Technical Paper

Response Surface Utilization in the Exploration of a Supersonic Business Jet Concept with Application of Emerging Technologies

2003-09-08
2003-01-3059
Commercial and independent market assessments continue to reveal a strong market desire for a supersonic business jet capable of meeting the requirements for supersonic, overland flight. However, the challenge of meeting the as-yet undefined regulations for overland flight, as well as meeting current and future noise and emission regulations, is daunting. An integrated modeling and simulation environment, based on the creation of response surface metamodels, allows for the rapid evaluation of a design space. From this environment the effects on metrics such as emissions, economics, sonic boom profiles and noise levels can rapidly be seen and manipulated. Such an environment also allows the application of technologies to the vehicle in order to evaluate their potential impact on the system-level metrics.
Technical Paper

Aerospace Systems Design: Economics as a New Way of Thinking?

2003-09-08
2003-01-3058
One of the major impetuses for the development of modern, robust design methodologies is the need for affordable aerospace systems. Because the affordability of a system is directly tied to the economics of developing, manufacturing, operating, and disposing of that system, it has become common practice to perform an economic analysis of a potential system to evaluate its viability. Additionally, as needs for improved modeling, analysis, and evaluation capability have arisen, several techniques which have proved themselves popular in economics have been adopted. While adopting these techniques has improved the capabilities of the designer/engineer, they do not proceed far enough. That is aerospace systems design, and consequently all complex systems design, could actually be considered an exercise in economics. All of the players, i.e. designers, firms, end users, and the systems themselves can be considered microeconomic entities.
Technical Paper

Implementation of a Physics-Based Decision-Making Framework for Evaluation of the Multidisciplinary Aircraft Uncertainty

2003-09-08
2003-01-3055
In today's business climate, aerospace companies are more than ever in need of rational methods and techniques that provide insights as to the best strategies which may be pursued for increased profitability and risk mitigation. However, the use of subjective, anecdotal decision-making remains prevalent due to the absence of analytical methods capable of capturing and forecasting future needs. Negotiations between airframe and engine manufacturers could benefit greatly from a structured environment that facilitates efficient, rational, decision-making. Creation of such an environment can be developed through a parametric physics-based, stochastic formulation that uses Response Surface Equations as meta-models to expedite the process.
Technical Paper

A Probabilistic Evaluation of Turbofan Engine Cycle Parameters for a Mach 1.8 Interceptor Aircraft

2003-09-08
2003-01-3056
A supersonic engine for a high Mach interceptor mission is modeled, and the requirements for the engine at different flight conditions are discussed. These include low fuel consumption at a non-afterburning supersonic dash Mach number for interception, and high thrust, both afterburning and non-afterburning, at a high subsonic Mach number for combat engagement. In addition, the engine should have low frontal area and low weight for a given sea level thrust rating. For the design point, the sea level static, standard day non-afterburning thrust is fixed at 20,000 lbs. The primary independent parameters varied in the study are fan pressure ratio, overall pressure ratio, turbine inlet temperature, throttle ratio, and extraction ratio. A design of experiments (DoE) is set up to vary the independent parameters to produce a meta-model for engine performance, geometry and weight.
Technical Paper

A Technique for Use of Gaussian Processes in Advanced Meta-Modeling

2003-09-08
2003-01-3051
Current robust design methods rely heavily on meta-modeling techniques to reduce the total computational effort of probabilistic explorations to a combinatorially manageable size. Historically most of these meta-models were in the form of Response Surface Equations (RSE). Recently there has been interest in supplementing the RSE with techniques that better handle non-linear phenomena. One technique that has been identified is the Gaussian Process (GP). The GP has fewer initial assumptions when compared to the linear methods used by RSEs and, therefore, fewer limitations. The initial implementation and employment techniques proposed in current literature for use with the GP are barely modified versions of those used for RSEs. A better, more tailored technique needs to be developed to properly make use of the nature of the GP, and minimize the effect of some of its limitations. Such a technique would allow for rapid development of a reusable, computationally efficient and accurate GP.
Technical Paper

Identification and Evaluation of Technologies for the Development of a Quiet Supersonic Business Jet

2002-11-05
2002-01-2927
The success of business jets like the Citation X, the fastest civil aircraft in use after the Concorde, highlights the need for speed to improve business and globalization. Currently, developing a supersonic business jet has many technical and economical impediments. These obstacles include sonic boom, emissions and noise requirements problems that are easily meet or do not exist for subsonic aircraft. A baseline aircraft, defined by an optimization process, is the starting point for this study. However, this baseline aircraft does not meet the sonic boom, emissions and noise requirements, which are very strict. Companion studies to this one indicate that it may be possible to meet emissions and noise requirements, but it is clear that technology infusion is necessary for the future viability of this aircraft concept to succeed.
Technical Paper

Quiet Supersonic Jet Engine Performance Tradeoff Analysis Using a Response Surface Methodology Approach

2002-11-05
2002-01-2929
Recent market studies indicate a renewed interest for a quiet Supersonic Business Jet (SBJ). The success of such a program will be strongly dependent upon the achievement of stringent engine noise, emissions and fuel consumption goals. This paper demonstrates the use of advanced design methods to develop a parametric design space exploration environment which will be ultimately used for the identification of an engine concept capable of satisfying acoustic levels imposed by FAR part 36 (stage IV) and NOx and CO2 standards as stated in the 1996 ICAO. The engine performance is modeled through the use of Response Surface and Design of Experiments Techniques, enabling the designer/decision-maker to change initial engine parameter values to detect the effects of the responses in a time efficient manner. Engine performance and engine weight results are obtained through physics-based engine analysis codes developed by NASA.
Technical Paper

Impact of Configuration and Requirements on the Sonic Boom of a Quiet Supersonic Jet

2002-11-05
2002-01-2930
Market forecasts predict a potentially large market for a Quiet Supersonic Business Jet provided that several technical hurdles are overcome prior to fielding such a vehicle. In order to be economically viable, the QSJ must be able to fly at supersonic speeds overland and operate from regional airports in addition to meeting government noise and emission requirements. As a result of these conflicting constraints on the design, the process of selecting a configuration for low sonic boom is a difficult one. Response Surface Methodology along with physics-based analysis tools were used to create an environment in which the sonic boom can be studied as a function of design and mission parameters. Ten disciplinary codes were linked with a sizing and synthesis code by using a commercial wrapper in order to calculate the required responses with the desired level of fidelity.
Technical Paper

Quiet, Clean, and Efficient, but Heavy - Concerns for Future Fuel Cell Powered Personal Air Vehicles

2006-08-30
2006-01-2436
Unfortunately, the promises of efficient, clean, quiet power that fuel cells offer are balanced by extremely low power densities and great infrastructure-related challenges. Studies by government and industry have investigated their feasibility for primary propulsion in light aircraft. These studies have produced mixed results but have tended to rely on integrating fuel cells into existing airframes, with respectably-performing light sport planes being turned into underpowered show planes with horribly compromised range and payload capabilities. Fuel cells today are in the earliest phases of technological development. As an aircraft propulsion system, they are as advanced as the Wright's reciprocating engine was a hundred years ago.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

An Assessment of a Reaction Driven Stopped Rotor/Wing Using Circulation Control in Forward Flight

1996-10-01
965612
The desire of achieving faster cruise speed for rotorcraft vehicles has been around since the inception of the helicopter. Many unconventional concepts have been considered and researched such as the advanced tilt rotor with canards, the tilt-wing, the folding tiltrotor, the coaxial propfan/folding tiltrotor, the variable diameter tiltrotor, and the stopped rotor/wing concept, in order to fulfill this goal. The most notable program which addressed the technology challenges of accomplishing a high speed civil transport mission is the High Speed Rotorcraft Concept (HSRC) program. Among the long list of potential configurations to fulfill the HSRC intended mission, the stopped rotor/wing is the least investigated due to the fact that the existing rotorcraft synthesis codes cannot handle this type of vehicle. In order to develop such a tool, a designer must understand the physics behind this unique concept.
Technical Paper

Methodology for the Conceptual Design Process of Morphing Configurations

2004-11-02
2004-01-3127
Traditional historical-data based design processes are clearly inappropriate for morphing vehicles. There are no historical data for these type of configurations, the appropriate mission for this class of vehicles is unknown, and there are many unique aspects of a morphing vehicle that are dependent on the specific concept chosen. The design process proposed in this paper attempts to account for these difficulties in a flexible and transparent manner while leveraging existing tools and processes wherever possible.
Technical Paper

A Method for Concept Exploration of Hypersonic Vehicles in the Presence of Open & Evolving Requirements

2000-10-10
2000-01-5560
Several unique aspects of the design of hypersonic aerospace systems necessitate a truly multidisciplinary approach from the outset of the program. These coupled with a vague or changing requirements environment, provide an impetus for the development of a systematic and unified approach for the exploration and evaluation of alternative hypersonic vehicle concepts. The method formulated and outlined in this paper is founded upon non-deterministic conceptual & preliminary design formulations introduced over the past decade and introduces the concept of viewing system level requirements in a similar manner. The proposed method is then implemented for the concept exploration and design of a Hypersonic Strike Fighter in the presence of ambiguous open and/or evolving requirements.
Technical Paper

Implementation of Parametric Anaylsis to the Aerodynamic Design of a Hypersonic Strike Fighter

2000-10-10
2000-01-5561
A Hypersonic Strike Fighter (HSF) would provide many benefits over current fighters, including increased effectiveness and survivability. However, there are many design challenges to developing such a vehicle. Therefore the conceptual design of an HSF requires the development of new tools and methods to analyze and select vehicle concepts. A parametric method was developed to determine aerodynamic characteristics of hypersonic vehicles in a rapid, automated way. This parametric method and other tools were then used to select a baseline design and optimize this baseline for the notional mission.
X