Refine Your Search

Topic

Search Results

Standard

Validation of Compressibility Test Systems for Friction Materials

2021-01-13
CURRENT
J3079/1_202101
This SAE Recommended Practice (RP) applies to the validation process for test systems used to measure deflection (compressibility, creep, or swell and growth) of friction materials and friction material assemblies. The materials or assemblies can fit passenger cars, light trucks, and commercial vehicles equipped with hydraulic or air brake systems, using disc or drum brakes.
Standard

Low-preload Deflection Measurement for Brake Pads, Noise Shims, and Brake Pad Assemblies

2016-07-14
CURRENT
J3079/2_201607
This SAE Standard specifies a method for measuring the deflection of friction materials, noise insulators, and disc brake pad assemblies to be used in road vehicles with a Gross Vehicle Weight Rating below 4336 kg. This part of the SAE J3079 includes the test for deflection and creep at various pressures under ambient temperature conditions. This SAE test method differs from SAE J2468 and ISO 6310 in the preload and maximum load applied to the test sample when deflection is measured. It also introduces additional measurements such as for deflection offset, hysteresis, and creep.
Standard

Deflection Measurement for Friction Materials Using Segment Applicator

2022-06-13
CURRENT
J3231_202206
This SAE Recommend Practice specifies a method for measuring the deflection of friction materials and disc brake pad assemblies in a manner more consistent with classical material compressive strain testing. This SAE test method differs from SAE J2468 in the preload and maximum load applied to the test sample when deflection is measured. It adopts the material applied stress levels found in ISO 6310 (0.5 to 8.0 MPa) using a 25 mm diameter flat plunger.
Standard

Thermal Transport Properties Germane to Friction Materials and Brakes

2011-03-08
HISTORICAL
J2581_201103
This SAE Information report defines the thermal transport properties important in the assessment of heat management capability of brake lining, shoe, disc and drum materials. The report discusses thermal diffusivity, specific heat capacity, thermal conductivity and thermal expansion. Measurement techniques for the appropriate ASTM standards are identified. The thermal transport properties discussed are material sample properties, not the properties of entire components such as pad assemblies.
Standard

Thermal Transport Properties Germane to Friction Materials and Brakes

2017-02-02
CURRENT
J2581_201702
This SAE Information report defines the thermal transport properties important in the assessment of heat management capability of brake lining, shoe, disc and drum materials. The report discusses thermal diffusivity, specific heat capacity, thermal conductivity and thermal expansion. Measurement techniques for the appropriate ASTM standards are identified. The thermal transport properties discussed are material sample properties, not the properties of entire components such as pad assemblies.
Standard

Thermal Transport Properties Germane to Friction Materials and Brakes

2003-09-05
HISTORICAL
J2581_200309
This SAE Information report defines the thermal transport properties important in the assessment of heat management capability of brake lining, shoe, disc and drum materials. The report discusses thermal diffusivity, specific heat capacity, thermal conductivity and thermal expansion. Measurement techniques for the appropriate ASTM standards are identified. The thermal transport properties discussed are material sample properties, not the properties of entire components such as pad assemblies.
Standard

Swell, Growth, and Dimensional Stability of Friction Materials and Noise Insulators when Exposed to Elevated Temperatures

2013-02-13
CURRENT
J160_201302
This performance standard specifies a universal method of measuring the dimensional change of friction materials to determine the effects of temperature. The test applies to both, disc and drum type linings commonly used in hydraulic and air brake systems for automotive or commercial vehicle applications. This standard describes two main test procedures. Method A, where the friction material is in contact with a heated surface to simulate the heat input to the pad that occurs during actual usage. Method B uses an oven to heat the freestanding material and is an approximate procedure requiring less instrumentation. Method A is recommended for disc brake pad assemblies, noise insulators, or flat coupons; while Method B is recommended for curved drum brake linings.
Standard

DETERMINING THE SPECIFIC GRAVITY OF BRAKE LININGS

1969-02-01
HISTORICAL
J380_196902
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. Specific gravity alone shows nothing about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. Specific gravity varies with the formulation of the lining. The specific gravity of sintered metal powder linings, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376 “Density of Sintered Metal Friction Material” (latest revision).1 The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer.
Standard

SPECIFIC GRAVITY OF BRAKE LINING

1993-02-01
HISTORICAL
J380_199302
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. Specific gravity alone shows nothing about a lining's ability to develop friction or to resist fade when used as a friction element in brakes. Specific gravity varies with the formulation of the lining. The specific gravity of sintered metal powder linings, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer.
Standard

SPECIFIC GRAVITY OF BRAKE LINING

1971-08-01
HISTORICAL
J380_197108
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. Specific gravity alone shows nothing about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. Specific gravity varies with the formulation of the lining. The specific gravity of sintered metal powder linings, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376, ‘Density of Sintered Metal Friction Material’ (latest revision).1 The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer.
Standard

Specific Gravity of Friction Material

2017-02-02
CURRENT
J380_201702
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer. Specific gravity alone shows nothing about a materials in use performance. The specific gravity of sintered metal powder friction materials, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376.
Standard

Specific Gravity of Friction Material

2002-09-17
HISTORICAL
J380_200209
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer. Specific gravity alone shows nothing about a materials in use performance. The specific gravity of sintered metal powder friction materials, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376.
Standard

Specific Gravity of Friction Material

2009-08-26
HISTORICAL
J380_200908
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer. Specific gravity alone shows nothing about a materials in use performance. The specific gravity of sintered metal powder friction materials, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376.
Standard

Hardness of Brake Lining

2015-08-27
CURRENT
J2654_201508
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. NOTE—This method is not a measure of friction level. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing. NOTE—The hardness of sintered powder metal lining is usually determined with Rockwell superficial hardness equipment. (See ASTM B 347)
Standard

Hardness of Brake Lining

2004-08-16
HISTORICAL
J2654_200408
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing.
Standard

Hardness of Brake Lining

2012-04-19
HISTORICAL
J2654_201204
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing.
X