Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of Injection Strategies on Fluid Flow and Turbulence in Partially Premixed Combustion (PPC) in a Light Duty Engine

2015-09-06
2015-24-2455
Partially premixed combustion (PPC) is used to meet the increasing demands of emission legislation and to improve fuel efficiency. With gasoline fuels, PPC has the advantage of a longer premixed duration of the fuel/air mixture, which prevents soot formation. In addition, the overall combustion stability can be increased with a longer ignition delay, providing proper fuel injection strategies. In this work, the effects of multiple injections on the generation of in-cylinder turbulence at a single swirl ratio are investigated. High-speed particle image velocimetry (PIV) is conducted in an optical direct-injection (DI) engine to obtain the turbulence structure during fired conditions. Primary reference fuel (PRF) 70 (30% n-heptane and 70% iso-octane) is used as the PPC fuel. In order to maintain the in-cylinder flow as similarly as possible to the flow that would exist in a production engine, the quartz piston retains a realistic bowl geometry.
Technical Paper

High-Speed Particle Image Velocimetry Measurement of Partially Premixed Combustion (PPC) in a Light Duty Engine for Different Injection Strategies

2015-09-06
2015-24-2454
It has been proven that partially premixed combustion (PPC) has the capability of high combustion efficiency with low soot and NOx emissions, which meet the requirements of increasingly restricted emission regulations. In order to obtain more homogenous combustion and longer ignition delay in PPC, different fuel injection strategies were employed which could affect the fuel air mixing and control the combustion. In the present work, a light duty optical diesel engine was used to conduct high speed particle image velocimetry (PIV) for single, double and triple injections with different timings. A quartz piston and a cylinder liner were installed in the Bowditch configuration to enable optical access. The geometry of the quartz piston crown is based on the standard diesel combustion chamber design for this commercial passenger car engine, including a re-entrant bowl shape.
Technical Paper

Analysis of Soot Particles in the Cylinder of a Heavy Duty Diesel Engine with High EGR

2015-09-06
2015-24-2448
When applying high amount of EGR (exhaust gas recirculation) in Partially Premixed Combustion (PPC) using diesel fuel, an increase in soot emission is observed as a penalty. To better understand how EGR affects soot particles in the cylinder, a fast gas sampling technique was used to draw gas samples directly out of the combustion chamber in a Scania D13 heavy duty diesel engine. The samples were characterized on-line using a scanning mobility particle sizer for soot size distributions and an aethalometer for black carbon (soot) mass concentrations. Three EGR rates, 0%, 56% and 64% were applied in the study. It was found that EGR reduces both the soot formation rate and the soot oxidation rate, due to lower flame temperature and a lower availability of oxidizing agents. With higher EGR rates, the peak soot mass concentration decreased. However, the oxidation rate was reduced even more.
X