Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Application of Willans Line Method for Internal Combustion Engines Scalability towards the Design and Optimization of Eco-Innovation Solutions

2015-09-06
2015-24-2397
Main aim of this paper was to exploit the well-known Willans line method in a twofold manner: indeed, beyond the usual identification of Willans line parameters to enable internal combustion engine scaling, it is also proposed to infer further information from identified parameters and correlations, particularly aiming at characterizing mechanical and frictional losses of different engine technologies. The above objectives were pursued relying on extended experimental performance data, which were gathered on different engine families, including turbo-charged Diesel and naturally aspirated gasoline engines. The matching between Willans line scaled performance and experimental ones was extensively tested, thus allowing to reliably proceed to the subsequent objective of characterizing mechanical losses on the basis of identified Willans parameters.
Technical Paper

Enhanced Multi-Zone Model for Medium Pressure Injection Spray and Fuel-Wall Impingement in Light-Duty Diesel Engines

2015-09-06
2015-24-2398
Nowadays the high competition reached by the automotive market forces Original Equipment Manufacturers (OEMs) towards innovative solutions. Strict emission standards and fuel economy targets make the work hard to be accomplished. Therefore modern engines feature complex architecture and embed new devices for Exhaust Gas Recirculation (EGR), turbocharging (e.g. multi-stage compressors), gas after-treatment (e.g. the Selective Catalyst Reduction (SCR)) and fuel injection (either high or low pressure). In this context the Engine Management System (EMS) plays a fundamental role to optimize engine operation. The paper deals with fuel spray and combustion simulation by a multi-zone phenomenological model aimed at the steady-state optimal tuning of the injection pattern.
X