Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Chassis Test Cycles for Assessing Emissions from Heavy Duty Trucks

1994-10-01
941946
Recent interest in the effect of engine life on vehicle emissions, particularly those from alternately fueled engines, has led to a need to test heavy duty trucks in the field over their lifetime. West Virginia University has constructed two transportable laboratories capable of measuring emissions as a vehicle is driven through a transient test schedule. Although the central business district (CBD) cycle is well accepted for bus testing, no time-based schedule suited to the testing of class 8 trucks with unsynchronized transmissions is available. The Federal Test Procedure for certifying heavy duty engines can be translated with some difficulty into a flat road chassis cycle although original data clearly incorporated unpredictable braking and inclines. Two methods were attempted for this purpose, but only an energy conservation method proved practical.
Technical Paper

Hybrid Diesel-Electric Heavy Duty Bus Emissions: Benefits Of Regeneration And Need For State Of Charge Correction

2000-10-16
2000-01-2955
Hybrid diesel electric buses offer the advantage of superior fuel economy through use of regenerative braking and lowered transient emissions by reducing the need of the engine to follow load as closely as in a conventional bus. With the support of the Department of Energy (DOE), five Lockheed Martin-Orion hybrid diesel-electric buses were operated on the West Virginia University Transportable Laboratory in Brooklyn, New York. The buses were exercised through a new cycle, termed the Manhattan cycle, that was representative of today's bus use as well as the accepted Central Business District Cycle and New York Bus Cycle. Emissions data were corrected for the state of charge of the batteries. The emissions can be expressed in units of grams/mile, grams/axle hp-hr and grams/gallon fuel. The role of improved fuel economy in reducing oxides of nitrogen relative to conventional automatic buses is evident in the data.
Technical Paper

Chassis Dynamometer Emission Measurements from Trucks and Buses using Dual-Fuel Natural Gas Engines

1999-10-25
1999-01-3525
Emissions from trucks and buses equipped with Caterpillar dual-fuel natural gas (DFNG) engines were measured at two chassis dynamometer facilities: the West Virginia University (WVU) Transportable Emissions Laboratory and the Los Angeles Metropolitan Transportation Authority (LA MTA). Emissions were measured over four different driving cycles. The average emissions from the trucks and buses using DFNG engines operating in dual-fuel mode showed the same trends in all tests - reduced oxides of nitrogen (NOx) and particulate matter (PM) emissions and increased hydrocarbon and carbon monoxide (CO) emissions - when compared to similar diesel trucks and buses. The extent of NOx reduction was dependent on the type of test cycle used.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

An Evaluation of Natural Gas versus Diesel in Medium-Duty Buses

2000-10-16
2000-01-2822
Significant numbers of transit buses now operate on natural gas. With support of the U.S. Department of Energy, the National Renewable Energy Laboratory has evaluated the cost, performance, and emissions of alternative fuel buses around the country. In this study, three natural gas and three closely matched diesel buses were compared. The buses, built by World Trans, were 26′5″long and used 1997 Cummins B-series engines. Particulate matter and oxides of nitrogen emissions from the natural gas buses were significantly lower than those from the diesel buses. However, the diesel buses had lower operating costs and higher fuel efficiency than the natural gas buses.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: Regulated Emissions

2000-10-16
2000-01-2815
Emissions from heavy-duty vehicles may be reduced through the introduction of clean diesel formulations, and through the use of catalyzed particulate matter filters that can enjoy increased longevity and performance if ultra-low sulfur diesel is used. Twenty over-the-road tractors with Detroit Diesel Series 60 engines were selected for this study. Five trucks were operated on California (CA) specification diesel (CARB), five were operated on ARCO (now BP Amoco) EC diesel (ECD), five were operated on ARCO ECD with a Johnson-Matthey Continuously Regenerating Technology (CRT) filter and five were operated on ARCO ECD with an Engelhard Diesel Particulate Filter (DPX). The truck emissions were characterized using a transportable chassis dynamometer, full-scale dilution tunnel, research grade gas analyzers and filters for particulate matter (PM) mass collection. Two test schedules, the 5 mile route and the city-suburban (heavy vehicle) route (CSR), were employed.
Technical Paper

The West Virginia University Heavy Duty Vehicle Emissions Database as a Resource for Inventory and Comparative Studies

2000-10-16
2000-01-2854
Inventory approaches for truck and bus emissions rely heavily on certification data, and no comprehensive results have been published to date. Two transportable chassis dynamometer laboratories developed and operated by West Virginia University (WVU) have been used extensively to gather realistic emission data from heavy-duty vehicles tested in the field, in controlled, simulated driving conditions. By default, a comprehensive database has been assembled, that comprises a wide variety of vehicles, engines, fuels, and driving scenarios. A subset of these data is analyzed in this paper for an illustration of practical utilization of such information, either for inventory assessments, or for comparative and correlation studies. General guidelines for data screening and analysis approaches are provided, along with examples of specific results and discussions for a selected cross-section of samples.
X