Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Increase of HC Emissions from a Direct Injection Diesel Engine during Long Idling Operation

1992-10-01
922227
Blue smoke and HC emissions from a direct injection diesel engine increase gradually during long idling operation (for a few hours). The extent of this increase depends on the injection nozzle specification and engine operating conditions. The accumulation of carbon deposits on the nozzle tip and combustion chamber wall will depend on these factors. Since the carbon absorbs fuel well, low volatility components can not evaporate during the combustion period and the unburned fuel emissions increase over time. This tendency changes according to fluctuations of spray shape and cylinder to cylinder fuel quantity variations.
Technical Paper

Effect of Reverse Squish on Fuel Spray Behavior in a Small DI Diesel Engine under High Pressure Injection and High Charging Condition

2000-10-16
2000-01-2786
Modern small DI diesel engines are operated at high loads and high speeds. In these engines the spray spreading on the cavity walls during the main combustion is kept approximately constant at all engine speeds to optimize the air utilization. However, spray spreading on the wall during the early and late part of combustion changes with engine speed due to the changes in air motion. At the end of impingement much of the spray moves outside the cavity due to a strong reverse squish when the injection timing is set near TDC. This causes incomplete combustion of fuel and increase emissions of HC and soot. Therefore, the study of the behavior of spray affected by the reverse squish is very important. In this study the fuel spray development under high injection pressure and high gas charging pressure was investigated photographically in a small direct injection diesel engine with a common rail injection system.
Technical Paper

A Study of Lean Burn of a 4 Stroke Gasoline Engine by the Aid of Low Pressure Air Assisted In-Cylinder Injection - Part II

1999-10-25
1999-01-3689
Lean-burn engines now being developed employ in-cylinder injection which requires high pressures and so necessitates expensive injection equipment. The injection system proposed here is an air assisted in-cylinder injection system which is injecting a mixture of air and fuel in the cylinder during the intake stroke and allowing atomization at lower injection pressures than those necessary in compressing fuel with a usual solid injection. This time, the experiments used a testing engine of a 4 stroke gasoline OHV type replacing the Side Valve type. Performance with a small depression in the main combustion chamber was investigated with a spark plug and reed valve installed in the depression. The engine was operated then following the same method as last year (SAE 982698). As a result, the lean burn method employed here was possible over a wide range of engine speeds and loads. Moreover, it was also shown that this operation was possible with a fully opened throttle valve.
Technical Paper

Effects of Injection Timing and Fuel Properties on Exhaust Odor in DI Diesel Engines

1999-05-03
1999-01-1531
Exhaust odor of DI diesel engines is worse than that of gasoline engines, especially at low temperatures and at idling. As the number of passenger cars with DI diesel engines is increasing worldwide because of their low CO2 emissions, odor reduction research of DI diesel engines is important. Incomplete combustion is a major cause of exhaust odor. Generally, odor worsens due to overleaning of the mixture in the cylinder and due to fuel adhering on the combustion chamber walls. To confirm this, the influences of different engine running conditions and fuel properties were investigated. The reason for the changes in exhaust odor with injection timing is evaluated by considerations of optimum positions of the maximum heat release. With n-heptane, a low boiling point fuel, odorous emissions increase because of overleaning of the mixture.
Technical Paper

Effects of a Hybrid Fuel System with Diesel and Premixed DME/Methane Charge on Exhaust Emissions in a Small DI Diesel Engine

1999-05-03
1999-01-1509
Early stage combustion systems, with lean homogeneous charge compression ignition (HCCI), have been studied, with the intent to decrease the pollutant emission characteristics of DI diesel engines. Early stage combustion enables drastic reductions in both nitrogen oxides (NOx) and smoke emission, but the operating load range is restricted, due to combustion phenomena, such as unsteady combustion and knocking. In this study, we explored the possibility of broadening the operating load range in HCCI and reducing pollutant emissions using Dimethyl Ether (DME) fumigated through the intake pipe. However, the improvements in load range were found to be less than 0.1 MPa in brake mean effective pressure (BMEP), even when compression ratios were reduced and Methane with high octane number was mixed. Therefore, a DME premixed charge could be used only at light loads. At heavier loads a hybrid fuel system with a DME premixed charge and diesel fuel injection is necessary.
Technical Paper

New Measuring Method for Blue and White Smoke in Diesel Engines by a Digital Camera System

1999-05-03
1999-01-1503
The blue and white smoke (cold smoke) emitted from diesel engines during warm up at low temperatures and idling conditions contains pollutant gases which irritate eyes and nose, and reductions in this irritating, odorous gas have become important with the increasing numbers of DI diesel engine vehicles. To assess the blue and white smoke a qualitative assessment method is necessary, though, there are no simple and exact measuring methods. In this study a new assessment method using a digital camera and photo analysis system with a computer is introduced. With this method the luminance of the cold smoke is displayed as 8 bit data, and a quantitative evaluation is simple, when the influence of sunshine is corrected for the smoke luminance. This paper describes the correction method for the sunshine illumination and the technique for taking the photographs.
Technical Paper

Influence of Aldehyde and Hydrocarbon Components in the Exhaust on Exhaust Odor in DI Diesel Engines

2000-10-16
2000-01-2820
This study investigated the influence of aldehyde and hydrocarbon components (HC components) on exhaust odor in DI diesel engines. Aldehyde is an important odorous group in exhaust, and it correlates well with exhaust odor at any engine condition. Formaldehyde (HCHO) in the exhaust has been identified as an important component causing irritating odor. Water-washing of exhaust gases does not trap HC components, while most of the odorous components are trapped with remarkable odor reductions. This indicates that the HC components in the exhaust have no direct effect on exhaust odor. However, the exhaust odor increases with increases in the concentration of the low boiling point HC components. This maybe due to the increase in intermediate odorous compounds like aldehydes, organic acids, or other oxygenated compounds in the combustion condition where the low boiling point HC components increase.
X