Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

SoH Recognition of Aviation Batteries Via Passive Diagnostic Device

2010-11-02
2010-01-1762
Aviation battery maintenance is trending toward on-condition maintenance. Nickel-Cadmium (NiCd), Valve Regulated Lead-Acid (VRLA), or prospective Li-ion batteries are used to start engines, provide emergency back-up power, and assure ground power capability for maintenance and pre-flight checkout. As these functions are mission essential, State of Health (SoH) recognition is critical. SoH includes information regarding battery energy, power and residual cycle life. This paper describes an SoH recognition technique for on-board aviation batteries and presents a passive diagnostic device (PDD). The PDD monitors on-board system battery current, voltage and ambient temperature and utilizes no active signals to the battery which can be restricted or even prohibited in order to avoid any interference with the vehicle electrical system.
Journal Article

Battery Diagnostic and Prognostics for Aviation Batteries Via a Passive Diagnostic Device

2012-10-22
2012-01-2239
Aviation battery maintenance is continuing to evolve. Much recent effort has been devoted to battery redesign to totally maintenance free or non-maintainable batteries. These batteries are placed into service and replaced at predetermined intervals. Still, some batteries are failing before their scheduled replacement period. For this reason attention is being focused on methods to transition batteries to an on-condition maintenance status. Nickel-Cadmium (NiCd) and Valve Regulated Lead-Acid (VRLA) are used to start engines, provide emergency back-up power, and assure ground power capability for maintenance and pre-flight checkout. Various Lithium-based battery chemistries are also now being developed and considered for use in these applications. As these functions are mission essential, State of Health (SoH) recognition is critical. SoH includes information regarding battery energy, power and residual cycle life.
Technical Paper

State of Health Recognition for Aircraft Batteries Dynamic Equivalent Schematic and First Principles Model Considerations

2008-11-11
2008-01-2933
Aviation battery maintenance is trending toward maintenance on-condition. NiCd, VRLA, or prospective Li-ion batteries are used to start engines, provide emergency back-up power, and assure ground power capability for maintenance and pre-flight checkout. As these functions are mission essential, State of Health (SoH) recognition is critical. GEM Power has developed a technological approach for SoH recognition, based on a battery equivalent schematic. The schematic is derived from a Matrix of Parameters (MoP), which includes ohm resistance, chemical resistance, electrical double layer capacity (EDLC), and open circuit voltage (OCV) [1].
Technical Paper

SOH Recognition of Li-ion Aviation Batteries Via Passive Diagnostic Device

2010-11-02
2010-01-1765
Aviation battery maintenance is trending toward on-condition maintenance. Nickel-Cadmium (NiCd), Valve Regulated Lead-Acid (VRLA), or Lithium-Ion (Li-ion) batteries are used to start engines, provide emergency back-up power, and assure ground power capability for maintenance and pre-flight checkout. As these functions are mission essential, recognition of battery state of health (SOH) is critical. SOH includes information regarding battery energy, power and residual cycle life along with monitoring overall battery safety. This paper describes an SOH recognition technique for on-board Li-Ion aviation batteries and discusses a passive diagnostic device (PDD), that analyzes input data derived from normal system parameters such as battery current, voltage and ambient temperature. These parameters are monitored in a totally passive mode eliminating the need for active signals to the battery.
X