Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a Detailed Friction Model to Predict Mechanical Losses at Elevated Maximum Combustion Pressures

2001-03-05
2001-01-0333
Engineers use phenomenological simulation models to determine engine performance. Using these models, we can predict with reasonable accuracy the heat release rate mechanism inside the engine cylinder, which enables us to obtain a prediction of the pressure history inside the engine cylinder. Using this value and the volume change rate of the combustion chamber, we can then estimate the indicated power output of the engine. However, in order to obtain the brake engine power output we must have an indication for the mechanical losses, a great part of which are friction losses. Up to now various correlations have been proposed that provide the frictional mean effective pressure as a function mainly of engine speed and load. These correlations have been obtained from the processing of experimental data, i.e. experimental values for the indicated and brake power output of engines.
Technical Paper

A Simulation Model for the Combustion Process of Natural Gas Engines with Pilot Diesel Fuel as an Ignition Source

2001-03-05
2001-01-1245
During the last years a great deal of efforts have been made to reduce pollutant emissions from Direct Injection Diesel Engines. The use of gaseous fuel as a supplement for liquid diesel fuel seems to be one solution towards these efforts. One of the fuels used is natural gas, which has a relatively high auto - ignition temperature and moreover it is an economical and clean burning fuel. The high auto - ignition temperature of natural gas is a serious advantage against other gaseous fuels since the compression ratio of most conventional diesel engines can be maintained. The main aspiration from the usage of dual fuel (liquid and gaseous one) combustion systems, is the reduction of particulate emissions. In the present work are given results of a theoretical investigation using a model developed for the simulation of gaseous fuel combustion processes in Dual Fuel Engines.
Technical Paper

A Simplified Model for the Spatial Distribution of Temperature in a Motored DI Diesel Engine

2001-03-05
2001-01-1235
The purpose of this paper is to present an alternative method to predict the temperature and flow field in a motored internal combustion engine with bowl in piston. For the fluid flow it is used a phenomenological model which is coupled to a computational fluid dynamic method to solve the energy conservation equation and therefore the temperature field. The proposed method has the advantage of simplicity and low computational time. The computational procedure solves the energy conservation equation by a finite volume method, using a simplified air motion model (estimating axial and radial velocities) to calculate the flow field. The finite volume discretization employs the implicit temporal and hybrid central upwind spatial differencing. The grid used contracts and expands following the piston motion, and the number of nodes in the direction of piston motion vary depending on the crank angle.
X