Refine Your Search

Topic

Author

Search Results

Technical Paper

Some Aerodynamic Aspects of Centrifugal Fan Characteristics of an Automotive HVAC Blower

2001-03-05
2001-01-0291
Experimental and numerical approaches were adopted to understand flow behavior and performance of centrifugal fans in an automotive HVAC blower system. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small scroll casing. Recent requirements in the design of the multiblade centrifugal fan being used in automotive HVAC blowers are not only higher pressure rise and lower noise, but also better packaging in the automobile cabin. In order to meet these requirements, among various well-known design factors affecting the fan performance, principal parameters related to the rotor shape were modified and detailed flow analysis was carried out. Measurements have been made by means of a miniature five-hole probe and a pressure scanning system connected to an online data acquisition system.
Technical Paper

Technical Potential for Thermally Driven Mobile A/C Systems

2001-03-05
2001-01-0297
Aqua-ammonia absorption refrigeration cycle and R-134a Vapor jet-ejector refrigeration cycle for automotive air-conditioning were studied and analyzed. Thermally activated refrigeration cycles would utilize combustion engine exhaust gas or engine coolant to supply heat to the generator. For the absorption system, the thermodynamic cycle was analyzed and pressures, temperatures, concentrations, enthalpies, and mass flow rates at every point were computed based on input parameters simulate practical operating conditions of vehicles. Then, heat addition to the generator, heat removal rates from absorber, condenser, and rectifying unit, and total rejection heat transfer area were all calculated. For the jet-ejector system, the optimum ejector vapor mass ratio based on similar input parameters was found by solving diffuser's conservation equations of continuity, momentum, energy, and flow through primary ejector nozzle simultaneously.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

Machinability of Sintered Distaloy HP-1 Components

2001-03-05
2001-01-0397
Powder metallurgy (P/M) industry has been known for the capability of producing near-net-shape parts. Its specific characteristics have resulted in lower production costs and eliminating many secondary machining. However, more and more P/M parts do require additional operations to fulfil their complex geometry features and surface roughness. Many of the machining factors that influence the machinability of cast and wrought steel parts, such as cutting speed, feedrate, coolant, tool geometry and shape, are also considered in the machining of P/M parts. However, composition, structure, and porosity of P/M are additional factors to be considered. Porosity in the P/M structure can decrease the machinability and shorten the tool life. Different variables have been considered in the material composition. Material densities and the free-machining additive manganese sulphide (MnS) are the two main factors of material composition, which dominate the machining performance.
Technical Paper

Optimizing Mechanical Performance of Injection Molded Multiple Gated Rotating Thermoplastic Components: Part 2 - Knit Line1/Weld Inter-Phase Integrity

2001-03-05
2001-01-0439
Due to the wide and ever increasing application of thermoplastics for the transportation and automotive industries, the performance of the under-the-hood plastic parts depend upon optimized design and processing technology and properties of polymer based materials. Nylon (polyamide) based plastics are used widely for automotive cooling fans and various under-the-hood injection molded components. For injection molding of multi-blade cooling fans and various rotating plastic parts the complex of multiple gating injection molding tools were used. Both the design of the various rotating parts (including industrial and automotive cooling fan, and the molding tool design are very important to get optimum flow patterns and to predict the locations and interaction of stress-bearing areas and knit lines (planes or inter-phases)1. The mechanical performance of the injection-molded thermoplastic components depends on the peculiarity of the part and the molding tool design.
Technical Paper

Optimizing Mechanical Performance of Injection Molded Multiple Gated Rotating Thermoplastic Components: Part 1 - Consideration of Structural Analysis and Knit Line1 Effects

2001-03-05
2001-01-0438
Engineering thermoplastics were successfully utilized in the design of injection molded rotating parts such as the impellers, wheels, and cooling fans of commercial air-cooled chillers, and gas and diesel engines. Complex aerodynamic and mechanical performance of impellers and cooling fans are very important for the efficiency of integrated air-movement, climate control and cooling systems of various types of engines of vehicles, cars, heavy-duty tractors and trucks. The transportation and automotive industries have developed a culture of reliability and cost effectiveness, in which high risks and adventures are not encouraged. Due to the wide and ever increasing application of thermoplastics for the transportation and automotive industries, the performance of the under-the-hood parts depend upon optimized design and processing technology and properties of polymer based materials.
Technical Paper

Analysis of Self-Excited Vibration in Hydraulic Power Steering System: Prevention Against Vibration by Supply Line

2001-03-05
2001-01-0488
A mathematical model for a hydraulic power steering system was constructed and numerical analysis was performed for self-excited vibration caused by rapid steering in the power steering system. From the examination, the guide of the prevention against the vibration was derived, such as positioning the rather long hose at near the power steering gear in the supply line, and the mechanism of the prevention was clarified. Moreover, the mathematical model and the guide of the prevention were verified by bench tests.
Technical Paper

Implementation of Fuel Film Compensation Algorithm on the Lamborghini Diablo 6.0 Engine

2001-03-05
2001-01-0609
This paper presents the experimental work and the results obtained from the implementation of a transient fuel compensation algorithm for the 6.0-liter V12 high-performance engine that equips the Lamborghini Diablo vehicles. This activity has been carried out as part of an effort aimed at the optimization of the entire fuel injection control system. In the first part of the paper the tests for fuel film compensator identification are presented and discussed. In this phase the experimental work has been conducted in the test cell. An automatic calibration algorithm was developed to identify the well-known fuel film model X and τ parameters, so as to define their maps as a function of engine speed and intake manifold pressure. The influence of engine coolant temperature has been investigated separately; it will be soon presented together with the air dynamics compensation algorithm. In the second part of the paper, the performance of the fuel dynamics compensation algorithm is analyzed.
Technical Paper

Sealing Rougher Surface Finishes Using Conformable Rubber Coating on MLS

2001-03-05
2001-01-0687
Some engineers in the U.S. are still hesitant to change from graphite cylinder head gaskets to MLS designs due to surface finish capabilities at engine plants and in the aftermarket. Sealing these various hardware surface finishes is accomplished via a rubber on the surface. The coating's ability to conform to various surface irregularities while withstanding high temperatures, long term coolant and oil exposure, and joint shearing forces is paramount to long term sealing. This paper will explore the sealing capabilities of a highly conformable flouro-polymer rubber coating developed specifically to seal rougher surface finishes.
Technical Paper

Numerical Study of Mixture Formation and Combustion Processes in a Direct Injection Gasoline Engine with Fan-Shaped Spray

2001-03-05
2001-01-0738
Numerical 3-D simulations are performed for the improvement of the new direct injection gasoline engine. A solution based local grid refinement method has been developed in order to reduce the CPU time. This method has been incorporated into the CFD program (STAR-CD) with in-house spray and combustion models. Calculation results were compared with the experimental data taken by the LIF technique, and good agreement was obtained for the mixture formation and combustion processes. Some calculations were carried out for the fuel-air mixture formation process during late injection stratified combustion and the following results were obtained. The unburnt fuel has a tendency to remain in the side of the piston cavity at the latter part of the combustion period. To reduce the amount of unburnt fuel, it was shown that the combination of a thin thickness fan spray and compact cavity forms a spherical mixture, suitable for combustion.
Technical Paper

Development of Fan Spray Simulation for Gasoline Direct Injection Engines

2001-03-05
2001-01-0962
In gasoline direct injection engines it is important to optimize fuel spray characteristics, which strongly affect stratified combustion process. Spray simulation is anticipated as a tool for optimizing nozzle design, but conventional simulation, which is based on experimental data and/or empirical laws regarding spray boundary condition at the nozzle exit, cannot predict the effect of various nozzle geometries on spray characteristics. In Japan, a fan spray injected from a slit type nozzle has recently been adopted for gasoline direct injection engines. This paper proposes a computational model for the fan spray. The structure of two-phase flow inside the nozzle is numerically analyzed using the volume of fluid (VOF) method in a three-dimensional CFD code based on the nozzle geometry. The results of these analyses are applied to classical linear instability theory to calculate fuel droplet mean diameter after primary breakup.
Technical Paper

Integrated Cooling Systems for Passenger Vehicles

2001-03-05
2001-01-1248
Electric coolant pumps for IC engines are under development by a number of suppliers. They offer packaging and flexibility benefits to vehicle manufacturers. Their full potential will not be realised, however, unless an integrated approach is taken to the entire cooling system. The paper describes such a system comprising an advanced electric pump with the necessary flow controls and a supervisory strategy running on an automotive microprocessor. The hardware and control strategy are described together with the simulation developed to allow its calibration and validation before fitting in a B/C class European passenger car. Simulation results are presented which show the system to be controllable and responsive to deliver optimum fuel consumption, emissions and driver comfort.
Technical Paper

Towards Optimization of Automotive Waste Heat Recovery Using Thermoelectrics

2001-03-05
2001-01-1021
The potential for thermoelectric power generation via waste heat recovery onboard automobiles to displace alternators and/or provide additional charging to a hybrid vehicle battery pack has increased with recent advances in thermoelectric materials processing. A preliminary design/modeling study was performed to optimize waste heat recovery for power generation using a modified radiator incorporating thermoelectric modules. The optimization incorporates not only thermoelectric performance but also critical systems issues such as accessory power consumption, vehicle drag, and added system weight. Results indicate the effectiveness of the thermoelectric module is extremely sensitive to ambient heat rejection and to the operating temperature range of the thermoelectric device.
Technical Paper

Development of a Cooling Module Containing a Radiator and a Condenser - Part 2: Alloy Development

2001-03-05
2001-01-1019
In conventional automobile designs, a radiator and a condenser are typically configured and mounted independently of each other. We have developed a smaller and more powerful cooling module by integrating these two products into one piece. The new cooling module has been designed to share the fin material and to have an insulating slit and other means for effective prevention of heat loss that occurs due to thermal conduction between the radiator and the condenser1). In addition, as one of the key techniques for integrating fins, we studied thermal spraying of brazing filler to the tube material and were able to achieve a practical-level cooling module through use of high-performance fins, contributing largely to the efforts to create a more compact, higher performance cooling module.
Technical Paper

Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation

2001-03-05
2001-01-1014
The operation of internal combustion engines depend on the successful management of the fuel, spark, and cooling processes to ensure acceptable performance, emission levels, and fuel economy. Two different thermal management systems exist for engines - air and liquid cooling. Smaller displacement utility and spark ignition aircraft engines typically feature air cooled systems which rely on forced convection over the exterior engine surfaces. In contrast, passenger/light-duty engines use a water-ethylene glycol mixture which circulates through the radiator, water pump, and heater core. The regulation of the overall engine temperature, based on the coolant's temperature, has been achieved with the thermostat valve and (electric) radiator fan. To provide insight into the thermal behavior of the cylinder-head assembly for enhanced cooling system operation, a dynamic model must exist.
Technical Paper

The Effects Of Contaminated Engine Coolants On The Service Life Of Elastomers

2001-03-05
2001-01-1180
Service life of elastomers is usually evaluated in the environment in which the elastomer is required to perform. Generally, the environment is considered to be a single fluid. However, inquiries from heavy duty and automotive OEMs regarding the cross contamination of fluids in coolant systems, has been steadily increasing. Additionally, numerous articles and technical bulletins have been written regarding the cross contamination of fluids. Various elastomers can be used in coolant systems; however, studies in the past have shown that the elastomers that are best for coolant systems may not be suitable once contaminants are introduced. With the introduction of Organic Acid Technology (OAT) coolants and Hybrid (Conventional/ OAT technology) into the automobile and truck markets, it has become necessary to perform elastomer compatibility studies to insure that seal materials will withstand the new fluids.
Technical Paper

A Chemical Base for Engine Coolant / Antifreeze with Improved Thermal Stability Properties

2001-03-05
2001-01-1182
Increasingly challenging international engine emissions reductions have resulted in some advances in engine emissions technologies that may motivate a change from the customary ethylene glycol and/or propylene glycol bases that have been the mainstay of engine antifreeze formulations for almost a century. The new engines' components, especially exhaust gas recirculation (EGR) devices, generate much greater thermal stress on the engine coolant. The oxidation of ethylene glycol and propylene glycol may be accelerated dramatically, resulting in coolant unsuitable for continued use in as little as a few months. The industry has been working towards extended engine coolant service intervals1,2,3,4, with some recommendations for service extended to as long as five years. It follows, therefore, that a requirement for coolant change at four to six month intervals (due to accelerated oxidation & aging) would be unacceptable to vehicle owners.
Technical Paper

Standard Test Method for Cavitation and Erosion-Corrosion Characteristics of Aluminum Pumps with Engine Coolants

2001-03-05
2001-01-1181
The ASTM D 2809 test method, “Standard Test Method For Cavitation Corrosion and Erosion-Corrosion Characteristics of Aluminum Pumps With Engine Coolants” was first published in 19691. The method involves a copper-pipe circuit through which coolant solution, heated to 113°C, is pumped at 103 kPa for 100 hours. The method was modified to change the pump used in the test in 1989. It was updated in 1994 to accommodate a change in the cleaning procedure and was subsequently reapproved by the ASTM D-15 Committee on Engine Coolants in 1999.2 Tests recently conducted on several modern coolants have produced “failing” results, but the coolants are performing well in the field. Further, the repeatability and reproducibility of the method have been questioned. A round-robin series of tests sponsored by the Ford Motor Company revealed significant variations and cause for concern.
Technical Paper

Heat Exchange Characteristics Of Silicate And Carboxylate-Based Coolants In Air-Cooled Engine Parts

2001-03-05
2001-01-1185
Effective heat transfer is the most important duty of an engine coolant. The heat exchange characteristics of the cooling system are primarily defined by the physical properties of the coolant, the presence of coatings and air resistance. Good heat transfer properties result in lower local temperatures (reducing the risk of corrosion at heat rejecting surfaces) and allow for more efficient engine designs (less coolant is needed to achieve the same amount of heat transfer, therefore, smaller radiators, heater cores and coolant overflow bottles could be used). If a coating is present, it not only interferes with heat transfer by acting as an insulator, but it may also result in hot spots from the uneven heat distribution and induce localized corrosion. This paper will compare the heat exchange characteristics of silicate and carboxylate-based engine coolants by measuring the rate of heat transfer in a heater core exposed to an air current.
X