Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Investigation of Ignition and Heat Release Characteristics in a Diesel Engine Using an Interactive Flamelet Model

2003-03-03
2003-01-1062
A multidimensional model is employed to model ignition and heat release rates in a Diesel engine. An interactive flamelet model is employed to model combustion. Nheptane is used as a representative fuel for Diesel fuel in the computations. Comparisons of computed and measured results are presented for a range of engine operating conditions: speed 1200 rpm, start of injection 12.5 degrees before top dead center to 9.5 degrees after top dead center and intake air temperature of 340-360 K. The primary objective of this work is to assess the ability of the model to reproduce ignition timings. The flamelet model uses detailed chemical kinetics and it is shown that it can reproduce the qualitative trends of changes in ignition delay and heat release rates with respect to changes in operating conditions of the engine. The capability to reproduce the measured changes in ignition delay is important because changes in injection timing lead to changes in ignition timing.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

2003-03-03
2003-01-1042
In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

Lattice Boltzmann Simulations of Flows in a Duct with Multiple Inlets

2003-03-03
2003-01-0220
In this paper, computations of pulsating flows in a duct with multiple inlets using the lattice Boltzmann method (LBM) are reported. As future emissions standards present a significant challenge for Diesel engine manufacturers, several options are being investigated to identify strategies to meet such regulations. Exhaust gas aftertreatment is one of the most important among them. As the performance of the various aftertreatment devices is sensitive to the flow conditions in the exhaust, a greater understanding of the flows under pulsating conditions in the presence of multiple cylinders is needed. The Lattice Boltzmann Method (LBM) is a relatively new and promising computational approach for applications to fluid dynamics problems. Two advantages of the method relative to traditional methods are ease of implementation and ease of parallelization and performance on parallel computers.
X