Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Modeling the Detailed Chemical Kinetics of NOx Sensitization for the Oxidation of a Model fuel for Gasoline

2010-04-12
2010-01-1084
At temperatures below 1100 K, the oxidation of nitric oxide (NO) impacts the oxidation of hydrocarbons, causing a sensitization effect in fuel combustion. This effect can be important in engine operations, especially those involving high levels of exhaust-gas recirculation (EGR). Many researchers have observed this NO sensitization for the oxidation of hydrocarbons in HCCI engines as well as stirred reactors. They used several model-fuel components relevant to gasoline, such as n-heptane, iso-octane, and toluene. As found in stirred reactor experiments, NO tends to increase the extent of oxidation for high-octane fuel components, such as isooctane and toluene. However, for the low-octane component n-heptane, NO has an inhibiting effect on hydrocarbon oxidation, particularly at low temperatures corresponding to the negative temperature coefficient (NTC) region.
Journal Article

Applying Detailed Kinetics to Realistic Engine Simulation: the Surrogate Blend Optimizer and Mechanism Reduction Strategies

2010-04-12
2010-01-0541
Designing advanced, clean and fuel-efficient engines requires detailed understanding of fuel chemistry. While knowledge of fuel combustion chemistry has grown rapidly in recent years, the representation of conventional fossil fuels in full detail is still intractable. A popular approach is to use a model-fuel or surrogate blend that can mimic various characteristics of a conventional fuel. Despite the use of surrogate blends, there remains a gap between detailed chemistry and its utilization in computational fluid dynamics (CFD), due to the prohibitive computational cost of using thousands of chemical species in large numbers of computational cells. This work presents a set of software tools that help to enable the use of detailed chemistry in representing conventional fuels in CFD simulation. The software tools include the Surrogate Blend Optimizer and a suite of automated mechanism reduction strategies.
Technical Paper

Validation Studies of a Detailed Kinetics Mechanism for Diesel and Gasoline Surrogate Fuels

2010-04-12
2010-01-0545
Surrogate fuels used in simulations need to capture the physical, combustion and emission characteristics of the real diesel and gasoline fuels they represent. This requirement can result in complex surrogate fuels that are blends of components representing several chemical classes, such as normal-, cyclo- and iso-alkanes, alkenes and aromatics. With a palette of around 20 potential surrogate-fuel components we can identify a blend to represent the most important physical and chemical properties of a particular real fuel. However, a detailed chemical kinetics mechanism is required to use such a surrogate in a model of the in-cylinder combustion processes. The detailed mechanism must capture the relevant kinetic pathways for all of the surrogate-fuel components. To this end, we have assembled a large comprehensive kinetic mechanism that includes several thousands of species to represent the combustion behavior of a wide range of surrogate fuels for gasoline and diesel.
Technical Paper

Predicting Emissions Using CFD Simulations of an E30 Gasoline Surrogate in an HCCI Engine with Detailed Chemical Kinetics

2010-04-12
2010-01-0362
To accurately predict emissions as well as combustion phasing in a homogeneous charge compression ignition (HCCI) engine, detailed chemistry needs to be used in Computational Fluid Dynamics (CFD) modeling. In this work, CFD simulations of an Oak Ridge National Laboratory (ORNL) gasoline HCCI engine have been performed with full coupling to detailed chemistry. Engine experiments using an E30 gasoline surrogate blend were performed at ORNL, which included measurements of several trace species in the exhaust gas. CFD modeling using a detailed mechanism for the same fuel composition used in the experiments was also performed. Comparisons between data and model are made over a range of intake temperatures. The (experiment & model) surrogate blend consists of 33 wt % ethanol, 8.7 % n-heptane and 58.3 % iso-octane. The data and simulations involve timing sweeps using intake temperature to control combustion phasing at a constant fuel rate.
Technical Paper

Efficient Simulation of Diesel Engine Combustion Using Realistic Chemical Kinetics in CFD

2010-04-12
2010-01-0178
Detailed knowledge of hydrocarbon fuel combustion chemistry has grown tremendously in recent years. However, the gap between detailed chemistry and computational fluid dynamics (CFD) remains, because of the high cost of solving detailed chemistry in a large number of computational cells. This paper presents the results of applying a suite of techniques aimed at closing this gap. The techniques include use of a surrogate blend optimizer and a guided mechanism reduction methodology, as well as advanced methods for efficiently and accurately coupling the pre-reduced kinetic models with the multidimensional transport equations. The advanced methods include dynamic adaptive chemistry (DAC) and dynamic cell clustering (DCC) algorithms.
X