Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Technical Paper

DOC Temperature Control for Low Temperature Operating Ranges with Post and Main Injection Actuation

2013-04-08
2013-01-1580
In a typical diesel engine exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF) and a selective catalytic reduction (SCR) system the main purpose of the DOC, besides the oxidation of CO to CO₂, is the oxidation of NO to NO₂. The NO to NO₂ conversion is an essential contribution for the downstream SCR system because the fast SCR reaction which provides the highest conversion rates of NOx to H₂O and N₂ works well only under roughly equal concentrations of NO and NO₂. The typical amount of NO to NOx ratio produced by the engine is about 0.95, hence the DOC is necessary to decrease this coefficient close to 0.50. Due to the temperature dependency of the DOC reaction mechanism the oxidation of NO to NO₂ takes only place sufficiently if the temperature of the DOC is higher than 200°C, which, however, cannot be reached during low engine speed and low load situations.
Technical Paper

Fuel and Immission Potential of Context Aware Engine Control

2013-04-08
2013-01-0306
This paper shows the potential of a multicalibration approach for reducing fuel consumption while keeping pollutant immissions. The paper demonstrates that the current engine control approach with a single fixed calibration involves important fuel penalties in areas with low vehicle densities where local pollution is not an issue, while the NOx emissions in urban areas are usually too high to fulfill air quality standards. The proposed strategy is based on using information about the vehicle location and the NOx concentrations in the ambient to choose a suitable calibration amongst a set of possibilities. To assess the potential of such a strategy experimental tests have been done with a state-of-art turbocharged Diesel engine. First, a design of experiments is used to obtain three different calibrations.
Technical Paper

Immission Oriented Engine NOx Control

2013-04-08
2013-01-0346
Pollutant immissions must be kept below some threshold values to prevent health and environmental damage. At the moment, the problem is usually met by constant emission limits for each vehicle independently from specific conditions - in particular, without any relation to the actual immission situation. This approach offers the advantage of simplicity, but offers no guarantee that the immission levels will be kept. New developments, in particular the expected diffusion of i2v methods, allows suggesting context specific emission levels so that the total emission roughly corresponding to the local immissions - can be limited to the target values. To meet this goal, emission-oriented control will be needed. This paper proposes a robust control system which allows tracking a time-varying NOx profile, based on the sliding mode concept.
X