Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

On the Establishment of the Analysis and Verification Methods Regarding the Air Ventilation with Very Low Velocity in JEM (KIBO) as the First Manned Space Development in Japan

2009-07-12
2009-01-2552
Japanese Experiment Module (JEM) called KIBO is the first manned space structure in Japan. Among several high technologies of JEM development, achievement of the air ventilation (AV) under the micro gravity was challenging because the requirements were very difficult to meet. The verification test in the module level under the operation of the flight hardware had a serious problem by the natural convection owing to the heat generation by the flight hardware. The analysis had problems how to verify its own validity because the turbulent flow around diffuser exits in addition to the laminar flowfield where the velocity is extremely small. This paper describes the solution of these problems in the analytical and testing verification points of view. As a result, we found our analysis applied to the AV performance could provide the complicated flowfield in low velocity with the effects of turbulent flow as well as natural convection.
Journal Article

Application of Model Based Functional Specification Methods to Environmental Control Systems Engineering

2011-10-18
2011-01-2504
The paper presents an innovative approach for the functional specification of complex and highly integrated aircraft control systems, such as the Environmental Control System (ECS), by applying model based specification methods. Complexity and effectiveness of modern ECS have significantly increased during the last few years along with development of new technologies and innovations in control engineering as well as digital data distribution and processing. Efficient management of cabin air flows on the one hand makes the ECS more energy-saving and on the other hand more complex with regard to its functionality and interaction with other interfaced aircraft systems. Numerous data interfaces to other systems and a high degree of automation are typical for a modern ECS. The aircraft manufacturer specifies the entire ECS functions and its interactions within the aircraft.
Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Journal Article

Application of Genetic Algorithm for Preliminary Trajectory Optimization

2011-10-18
2011-01-2594
The aviation sector has played a significant role in shaping the world into what it is today. The rapid growth of global economies and the corresponding sharp rise in the number of people now wanting to travel on business and for pleasure, has largely been responsible for the development of this industry. With a predicted rise in Revenue Passenger Kilometers (RPK) by over 150% in the next 20 years, the industry will correspondingly be a significant contributor to environmental emissions. Under such circumstances optimizing aircraft trajectories for lowered emissions will play a critical role amongst various other measures, in mitigating the probable environmental effects of increased air traffic. Aircraft trajectory optimization using evolutionary algorithms is a novel field and preliminary studies have indicated that a reduction in emissions is possible when set as objectives.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

2011-10-18
2011-01-2639
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Journal Article

Optimal Control to Recover a Safe Situation from Low/High-Energy Situation in Approach

2011-10-18
2011-01-2618
The main study illustrated in this paper deals with the computation of commands which allow an aircraft to recover a nominal energy trajectory from a low/high energy state during the approach phase. The commands taken into account in this paper are the slat/flap aerodynamic control surfaces which allow the aircraft to maintain the best lift performance for low velocities during the approach phase. In this study, it is supposed that the aircraft maintains a known vertical trajectory, simplified by a constant ground slope, while no engines and airbrakes are used. A non-linear optimization approach is studied in this paper and two methods are tested: a) Hermite-Simpson, trapezoidal collocation methods, b) Sequential numerical integration method. These different methods are tested and simulation results are given for comparison, with different initial velocities permitting to change the initial energy state.
Journal Article

A Cockpit Point of View on "Human Factors" for a Changing ATM Environment

2011-10-18
2011-01-2709
The vision of SESAR is to integrate and implement new technologies to improve air traffic management (ATM) performance. Enhanced automation and new separation modes characterize the future concept of operations, where the role of the human operator will remain central by integrating more managing and decision-making functions. The expected changes represent challenges for the human actors in the aircraft and on ground and must be taken into account during the development phase. Integrating the human in the ATM system development starting from the early design phase is a key factor for future acceptability. This paper describes the adaptation of currently applied Cockpit Human Factors processes in order to be able to design the aircraft for the future ATM environment.
Journal Article

Optimization of an Unconventional Environmental Control System Architecture

2011-10-18
2011-01-2691
The Environmental Control System is a relevant element of any conventional or More Electric Aircraft (MEA). It is either the key consumer of pneumatic power or draws a substantial load from the electric power system. The objective of this paper is to present a tool for the design of Environmental Control Systems and to apply it to an unconventional system. The approach is based on a recently proposed methodology, which is improved with respect to flexibility and ease-of-use. Furthermore, modeling and simulation of vapor compression cycles is discussed, which are candidate technological solutions for More Electric Aircraft concepts. A steady-state moving boundary method is presented to model heat exchangers for such applications. Finally, the resulting design environment is applied to optimization of an unconventional ECS architecture and exemplary results are presented.
Journal Article

A Model-based Solution to Robust and Early Detection of Control Surface Runaways

2011-10-18
2011-01-2803
This paper discusses the design of a model-based fault detection scheme for robust and early detection of runaways in aircraft control surfaces servo-loop. The proposed scheme can be embedded within the structure of in-service monitoring systems as a part of the Flight Control Computer (FCC) software. The final goal is to contribute to improve the performance detection of unanticipated runaway faulty profiles having very different dynamic behaviors, while retaining a perfect robustness. The paper discusses also the tradeoffs between adequacy of the technique and its implementation level, industrial validation process with Engineering support tools, as well as the tuning aspects. The proposed methodology is based on a combined data-driven and system-based approach using a dedicated Kalman filtering. The technique provides an effective method ensuring robustness and good performance (well-defined real-time characteristics and well-defined error rates).
Journal Article

Blind Bolts Developments

2011-10-18
2011-01-2755
There is an ever growing demand for blind fastener in the aerospace industry. This demand is driven not only by the advantages of single sided installation, but also by the potential to fully automate their installation process. Blind fasteners can easily be integrated with innovative end-effectors that combine drilling, installation and inspection systems, enabling the reduction of process cycle times and their associated cost savings. Clearly the advantages of single sided installation are a key benefit, but it cannot be forgotten that currently the mechanical performance of these systems is reduced compared with conventional threaded or swaged parallel shank fasteners. There are other important drawbacks existing around them which could penalise significantly the optimised design and performance of the structures. Specific key characteristics that take into account some of these drawbacks have been established by Airbus which will be referenced in this paper.
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

2011-10-18
2011-01-2629
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.
Journal Article

Methodology for Solving Contact Problem during Riveting Process

2011-10-18
2011-01-2582
The paper describes the methodology of contact problem solving that is used in specialized software code aimed at simulation of aircraft assembly process. For considered class of problems it is possible to radically reduce the number of unknowns without loss of accuracy. The results of validation of developed code against physical experiments and commercial FEM codes are also given.
Journal Article

OBIGGS for Fuel System Water Management - Proof of Concept

2011-10-18
2011-01-2793
Fuel on-board dehydration during flight technologies has been modeled and experimentally studied on a laboratory testing setup in normal specific gas flow rates range of 0.0002-0.0010 sec-₁. Natural air evolution, ullage blowing and fuel sparging with dry inert gas have been studied. It has been shown that natural air evolution during aircraft climb provides a significant, substantial, but insufficient dehydration of fuel up to 20% relative. Ullage blowing during cruise leads to a constant, but a slow dehydration of fuel with sufficient column height concentration gradient. Dry inert gas sparging held after the end of the natural air evolution or simultaneously with natural air evolution provides rapid fuel dehydration to the maximum possible values. It potentially may eliminate water release and deposition in fuel to -50°C. It has been found that for proper dehydration, necessary and sufficient volume of dry inert gas to volume of fuel ratio is about 1.
Technical Paper

Aeronautical Fuel Cell System Application and Associated Standardization Work

2006-11-07
2006-01-3093
Airbus is a leading aircraft manufacturer with the position as technology driver and a distinct customer orientation, broad commercial know-how and high production efficiencies. It is constantly working on further and new development of its products from ecological and economical points of view. Fuel Cell Systems (FCS) on board of an aircraft provide a good opportunity to address both aspects. Based on existing and upcoming research results it is necessary to find trend-setting measures for the industrial implementation and application of this technology. Past and current research efforts have shown good prospects for the industrial implementation and application of the fuel cell technology. Being an efficient source of primarily electric power the fuel cell would be most beneficial when used in conjunction with electrical systems.
Technical Paper

Heat Rejection/Retention Characteristics of a Re-deployable Radiator for Venus Exploration Mission

2007-07-09
2007-01-3241
This paper experimentally and analytically evaluates the heat rejection/retention performance of a reversible thermal panel (RTP) which can autonomously change thermal performance depending on its own thermal conditions. The RTP is considered as a candidate methodology for thermal control of Venus mission, PLANET-C, in order to save survival heater power. An RTP prototype was tested and evaluated. An analytical thermal model of the RTP was also developed, and basic performances of the RTP were evaluated. Thermal performance of the RTP when applied to the longwave camera (LIR) of the PLANET-C was evaluated with an analytical thermal model as functions of fin deployment directions and rear surface properties of the RTP's fin. The analytical results showed that the RTP can save heater power in comparison to a conventional radiator.
Technical Paper

Thermal Control of X-ray Astronomy Satellite ASTRO-E2 “SUZAKU”

2007-07-09
2007-01-3081
Japanese X-ray astronomy satellite ASTRO-E2 named “SUZAKU“ was successfully launched on July 10, 2005. SUZAKU is the fifth Japanese X-ray astronomy satellite to observe X-ray coming from hot and active regions in the universe in collaboration with NASA GSFC, MIT and University of Wisconsin. “SUZAKU” has achieved the high sensitivity wide energy band X-ray spectroscopy than ever before. It is equipped with X -ray telescopes (XRT) and three kinds of focal plane instruments, X-Ray Imaging Spectrometer (XIS), X-Ray Spectrometer (XRS) and Hard X-Ray Detector (HXD). A radiation-cooling system, connected to XIS and HXD with heat pipes, is provided to cool them below −30 C and −20 C respectively. Furthermore, a side panel has a large cut out to expose XRS cryogenic Dewar for direct cooling. Flight temperatures indicate that the three sensors are kept below their cooling-requirement temperature.
Technical Paper

Evaluation of Small Scale Icing Tunnel Test Results

2007-09-24
2007-01-3328
A test has been performed using a scaled aircraft wing section in an icing tunnel facility. The model had an electro-thermal ice protection system installed. The tests performed considered both anti-icing and de-icing modes of operation. The results have been assessed using numerical codes and the effect of model scaling has been considered. The non-scaled skin thickness of the model was found to modify the predicted behaviour of a full-scale installation, predominantly due to lateral conduction effects. The extent of this has been assessed and recommendations are made as to the performance that may be expected at full-scale.
Technical Paper

Minimizing Impact on Climate in Aircraft Design

2007-09-17
2007-01-3807
A two-level approach for the consideration of climate change in the aircraft design process is proposed. Depending on the availability of suitable atmospheric metrics, the methodology has been put into practice only recently. The assessment of technology and design changes is enabled with regard to the impact of aircraft on climate. First example applications show that the methodology is not yet ready for full industrial application, but that it can give useful hints for the orientation of aircraft concepts for the future aviation system.
Technical Paper

Thermal-Vacuum Test Data For Jem/Maxi Loop Heat Pipe System With Two Radiators

2008-06-29
2008-01-1999
This paper presents thermal-vacuum test data obtained for the JEM MAXI loop heat pipe (LHP) with two separate radiators operating under transient regimes representative of those to be encountered during the flight. The Monitor of All-sky X-ray Image (MAXI) in the Japanese Experiment Module (JEM), on the International Space Station (ISS), is an X-ray camera with wide fields of view to monitor the universe. The LHP collects about 32 Watts of heat dissipated by the detector and thermoelectrics and transports it to two separate radiators, with orthogonal views to space. Propylene is used as a working fluid due to a wide useful operating temperature range from -60°C to +60°C needed for this program. The LHP utilizes two fluid flow regulators to control fluid flow in the two parallel condensers and is equipped with two startup heaters, and three shutdown heaters controlled by six thermostats.
Technical Paper

Stick Fastener Feed System for Large Variety & Small Quantity

2008-09-16
2008-01-2320
Electroimpact has developed a new Fastener Feed System which provides an automated solution for fasteners previously hand fed via drop tubes. The hardware is simple, compact, and is supplied a fraction of the cost of hoppers or cartridges. It can be used as a primary feed system or it can be used as an auxiliary feed system when combined with feed systems designed for high quantities of fasteners. We have installed this system on the A380 Stage 0 LVER lower panel wing machines and feed 5 diameters, 10 grips each, for a total of 50 different fastener types. This system moves 547 total fasteners per ship set from manual feed to automatic feed, saving considerable build time.
X