Refine Your Search

Topic

Author

Search Results

Technical Paper

Enhanced Specific Heat Capacity of Molten Salt-Metal Oxide Nanofluid as Heat Transfer Fluid for Solar Thermal Applications

2010-11-02
2010-01-1734
In this study, a molten salt-based high temperature nanofluid is explored for solar thermal energy conversion applications. The efficacy of the nanofluid as a heat transfer fluid (HTF) in concentrating solar power systems is explored in this study. The molten salt can enable higher operating temperature resulting in enhancement of the overall system efficiency for power generation (using, for example, a Rankine cycle or Stirling cycle). However, the usage of the molten salt as the HTF is limited due to their low specific heat capacity values (compared with, for example, water or silicone oils). The low specific heat of molten salt can be enhanced by doping small amount of nanoparticles. Solvents doped with minute concentration of nanoparticles are termed as "Nanofluids." Nanofluids are considered as attractive coolants for thermal management applications due to their anomalously enhanced thermal properties (compared with the neat solvent).
Technical Paper

Experimental Validation of a Simple Analytical Model for Specific Heat Capacity of Aqueous Nanofluids

2010-11-02
2010-01-1731
The aim of this study is to explore the anomalous variation of thermo-physical properties of aqueous nanofluids. The specific heat of three water-based nanofluids containing silicon dioxide (SiO₂), titanium dioxide (TiO₂), and aluminum oxide (Al₂O₃) nanoparticles were measured using a differential scanning calorimeter (DSC). Measurements were performed over a temperature range of 30°C - 80°C which was chosen to be between melting point and boiling point of water. The experiments were implemented with different sizes of nanoparticles to investigate the effect of the size of nanoparticles on the specific heat of nanofluids. The specific heat of the nanofluids was plotted as a function of the diameter of nanoparticles and the mass concentration of nanoparticles. The results indicate that the specific heat of aqueous nanofluids decreases as the mass concentration of nanoparticles increases from 0.5% to 20%.
Technical Paper

Thermal Analysis of Carbon Nanotubes Suspended in PAO Mixtures

2010-11-02
2010-01-1732
Poly Alpha Olefins (PAO) are extensively used as cooling fluid for thermal management in avionics cooling applications owing to their superior physical and chemical properties, such as greater fluidity at low temperature, lower volatility, a higher viscosity index, lower pour point, better oxidative and thermal stability as well as low toxicity. Solvents doped with minute concentration of nanoparticles are termed as “Nanofluid”. Anomalous enhancements in thermo-physical property values as well as in heat transfer performance of nanofluids have been reported using nanofluids (compared to that for the neat solvent). The thermal interfacial resistance between the nanoparticle and the solvent molecules (Kapitza Resistance) is the dominant factor controlling the efficacy of the nanofluids for cooling applications.
Technical Paper

Investigation of Thermal Characteristics of Nanofluids During Flow in a Micro-channel Using an Array of Surface Temperature-Nano-Sensors

2010-11-02
2010-01-1735
The thermal characteristic of nanofluid for flow in a micro-channel is reported in this study by using an array of temperature nano-sensors. In this study, K-Type Thermocouples (Chromel/Alumel) were fabricated by surface micromachining process on a silicon wafer to obtain the thin film thermocouple array (TFTA). The micro-channel with TFTA was mounted on a heater (calorimeter) for imposing a specified heat flux on the bottom surface of the micro-channel. De-ionized water (DIW) was used as the test fluid for recording the temperature profile on the wafer substrate at different flow rates and heat fluxes. Aqueous nanofluids containing alumina nanoparticles were then used to record the temperature profiles under similar heat flux and flow conditions. The temperature profile was measured with the TFTA in a linear array of 5 columns and 2 rows of sensors while the volume flow rate was varied from 5 μl/min, to 7 μl/min and to 9 μl/min.
Technical Paper

Development of Advanced Seals for Space Propulsion Turbomachinery

1992-04-01
921028
Current activities in seals for space propulsion turbomachinery that the NASA Lewis Research Center sponsors are surveyed. The overall objective is to provide the designer and the researcher with the concepts and the data to control seal dynamics and leakage. Included in the program are low-leakage seals, such as the brush seal, the “ceramic rope” seal, low-leakage seals for liquid oxygen turbopumps, face seals for two-phase flow, and swirl brakes for stability. Two major efforts are summarized: a study of seal dynamics in rotating machinery and an effort in seals code development.
Technical Paper

Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

1998-04-21
981261
This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight @ >80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime.
Technical Paper

GaAs/Ge Solar Powered Aircraft, 1998

1998-04-21
981260
Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development, of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.
Technical Paper

Topological Variations of the Inverse Dual Converter for High-Power DC-DC Distribution Systems

1992-08-03
929114
New dc to dc converter topologies are presented which are suitable for high density high power supplies. Topological variations of the basic inverse dual converter (IDC) circuit such as the transformer coupled, the multiphase and the multipulse derivation of the single phase IDC have been analysed and some simulation results have been presented. It has been shown in a recent publication [1] that the single phase IDC offers a buck-boost operation over wide range without transformer, bidirectional power flow, and complementary commutation of the switches. The topologies examined in this paper have additional features such as lower device and component stresses, and smaller filter requirements, resulting in smaller size and weight. Some performance and possible applications are also examined. Finally the IDCs for serial and parallel power distribution, and ac tapping of the IDC are discussed.
Technical Paper

Optimization of Armored Spherical Tanks for Storage on the Lunar Surface

1992-08-03
929085
A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level; or add extra capacity, in the form of spare tanks, that results in survival of a given number out of the ensemble at the desired level.
Technical Paper

Description of the SSF PMAD DC Testbed Control System Data Acquisition Function

1992-08-03
929222
The NASA Lewis Research Center in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation and resource management are being evaluated in the testbed.
Technical Paper

New Architectures for Space Power Systems

1992-08-03
929329
Electric power generation and conditioning have experienced revolutionary development over the past two decades. Furthermore, new materials such as high energy magnets and high temperature superconductors are either available or on the horizon. Our work is based on the promise that new technologies are an important driver of new power system concepts and architectures. This observation is born out by the historical evolution of power systems both in terrestrial and aerospace applications. This paper will introduce new approaches to designing space power systems by using several new technologies.
Technical Paper

DC Side Active Power Filters for Aircraft Electric Power Systems

1992-08-03
929496
In this paper a new dc-side active filtering system is proposed for aircraft electric power systems. The proposed active filter provides a continuous adjustable reactive power (both in phase and frequency) in the dc-link to meet the changing requirements which arise due to unbalanced and nonlinear loads at the 400(Hz) output. Furthermore, the active filter eliminate the additional capacitive kVA required in the dc-link caused by unbalanced and nonlinear loads. Results from a laboratory prototype active filter are also discussed.
Technical Paper

Ceramic Composites Portend Long Turbopump Lives

1993-04-01
931372
Use of continuous fiber reinforced ceramic matrix composites (FRCMC) for turbopump hot section components offers a number of benefits. The performance benefits of increased turbine inlet temperature are apparent and readily quantifiable. Perhaps less obvious are the potential benefits of increased component life. At nominal turbopump operating conditions, FRCMC offer increased operating temperature margin relative to conventional materials. This results in potential for significant life enhancement. Other attributes (e.g., thermal shock resistance and high cycle fatigue endurance) of FRCMC provide even greater potential to improve life and reduce maintenance requirements. Silicon carbide (Sic) matrix composites with carbon fibers (C/SiC) do not degrade when exposed to hydrogenrich steam for 10 hours at 1200°C. This FRCMC is resistant to thermal shock transients far in excess of those anticipated for advanced, high temperature turbomachinery.
Technical Paper

Computer Simulation of a 20-kHz Power System for Advanced Launch Systems

1993-04-01
931425
The performance of two 20-kHz actuator power systems being built for an advanced launch system are evaluated for a typical launch scenario using an end-to-end system simulation. Aspects of system performance ranging from the switching of the power electronic devices to the vehicle aerodynamics are represented in the simulation. It is shown that both systems adequately stabilize the vehicle against a wind gust during a launch. However, it is also shown that in both cases there are bus voltage and current fluctuations which make system power quality a concern.
Technical Paper

Overview and Evolution of the LeRC PMAD DC Test Bed

1992-08-03
929217
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) has been actively involved in the development of electrical power system test beds to support of the overall design effort. Throughout this time, the SSFP Program has changed the design baseline numerous times, however, the test bed effort has endeavored to track these changes. Beginning in August 1989 with the baselining of an all DC System, a test bed was developed which supported this design baseline. However, about the time of the Test Bed's Completion in December 1990, the SSFP was again going through another design scrub known as Restructure. This paper describes the LeRC PMAD DC Test Bed and highlights the changes that have taken place in the Test Bed configuration and design resulting from the SSFP Restructure Exercise in December 1990.
Technical Paper

Description of the PMAD Systems Test Bed Facility and Data System

1992-08-03
929221
The National Aeronautics and Space Administration (NASA), Lewis Research Center (LeRC) is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The Power Management and Distribution (PMAD) Systems Testbed was assembled to support the design and early evaluation of SSF EPS operating concepts. The PMAD Systems Testbed represents a portion of the SSF EPS, containing intelligent switchgear, power conditioning devices, and the EPS Controllers. The PMAD Systems Testbed facility is discussed, including the power sources and loads available. A description of the PMAD Data System (PDS) is presented. The PDS controls the testbed facility hardware, monitors and records the EPS control data bus and external data. The external data includes testbed voltages and currents along with facility temperatures, pressures, and flow rates. Transient data is collected utilizing digital oscilloscopes.
Technical Paper

High Impedance Fault Detection Using Artificial Neural Network Techniques

1992-08-03
929103
Artificial Neural Network(ANN) techniques are used to develop a system to detect High Impedance Faults(HIFs) in electric power distribution lines. Encouraging results were observed with a simple Multi-layer Perceptron(MLP) trained with the backpropagation learning algorithm. Although the results are not significantly better than those reported with other algorithmic approaches, ANN techniques have potential advantages over the other approaches; namely, ability to train the system easily to accommodate different feeder characteristics, ability to adapt and so become a better detector with experience and better fault tolerance. When these features are incorporated, the system is expected to perform better than existing systems. The system we developed for the current phase, the training strategies used, the tests conducted and the results obtained are discussed in this paper. Also background discussions on existing HIF detection techniques, and ANN techniques can be found in this paper.
Technical Paper

Dynamic Isotope Power System Design Considerations for Human Exploration of the Moon and Mars

1992-08-03
929483
To support the Space Exploration Initiative, studies were performed to investigate and characterize Dynamic Isotope Power System (DIPS) alternatives for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. A key part of this characterization was to determine how the mission environment affects system design. The impact of shielding to provide astronaut protection from power system radiation was also examined. Impacts of mission environment and shielding were examined for two representative DIPS types (closed Brayton cycle and Stirling cycle converters). Mission environmental factors included: (1) thermal background; (2) dust and atmospheric corrosion; (3) meteoroid damage; and (4) presence of an atmosphere on Mars. Physical effects of these factors on thermal power systems were identified and their parametric range associated with the mission and mission environment were determined.
Technical Paper

Fault-Tolerant Adaptive Control for Load-Following in Static Space Nuclear Power Systems

1992-08-03
929453
The possible use of a dual-loop, model-based adaptive control system for load-following in static space nuclear power systems is investigated. The objective of the fault-tolerant, autonomous control system is to deliver the demanded electric power at the desired voltage level, by appropriately manipulating the neutron power through the control drums. As a result sufficient thermal power is produced to meet the required demand in the presence of dynamically changing system operating conditions and potential sensor failures. Even though the proposed approach has thus far been applied only to a thermoelectric space nuclear power system, it is equally applicable to other static space nuclear power systems, such as thermionic systems. This is because of the considerable similarities in the underlying operational issues and in the dynamics of these systems from a control engineering viewpoint.
Technical Paper

The NASA CSTI High Capacity Power Project

1992-08-03
929312
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.
X