Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Integration of Automated Safing Responses

2004-07-19
2004-01-2550
Environmental Control and Life Support (ECLS) functionality aboard the International Space Station (ISS) includes responding to various emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These responses are designed to aid the crew in their response actions to the emergencies. This paper focuses on the integration of ISS responses to these three emergencies. It includes the ISS automatic integrated vehicle response and the initial crew response. Philosophies regarding the generic response to an on-orbit emergency are described. Software responses are defined for modules on orbit up to the addition of the Docking Compartment (DC1) in the assembly sequence. Possible future improvements are also described.
Technical Paper

International Space Station Automated Safing Responses to Hazardous Atmosphere

2004-07-19
2004-01-2549
Environmental Control and Life Support (ECLS) system functionality aboard the International Space Station (ISS) includes responding to various emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions to the emergencies. The response to a hazardous atmosphere on board the ISS, including the automatic integrated vehicle response and crew actions, is the focus of this paper. Philosophies regarding the detection of and response to emergencies involving chemical releases are described. Vehicle configuration is discussed for currently supported automatic responses, and crew actions are defined for modules on orbit up to the addition of the Docking Compartment (DC1) in the assembly sequence.
Technical Paper

International Space Station Metal Oxide Odor Anomaly

2004-07-19
2004-01-2598
On occasion, seemingly normal operations can have significant effects upon the closed environment of the International Space Station (ISS). An example of such a case occurred on February 20, 2002 when a nominal Metal Oxide (MetOx) canister regeneration operation onboard the ISS resulted in an unexpected, foul odor that affected the crew and station operations. A case study summarizing the root cause for the event and steps taken to ensure that future MetOx regeneration operations proceed safely is presented. Included in the summary are engineering analyses and environmental monitoring results supporting the root cause assessment as well as testing conducted and flight operations changes implemented to ensure safe operations.
X