Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

ECOA - A New Architecture Concept for Complex Military Software Systems

2014-09-16
2014-01-2227
ECOA is an active software architecture research programme conducted by the French Republic and United Kingdom. It is one product of the recent Defence and Security Co-operation Treaty signed between the two nations. This paper provides an overview of the programme goals and progress as well as an introduction to the technology being developed and comparison to related initiatives. The goal of the ECOA programme is to define an open software architecture that enables collaborative development of mission system software. The ECOA programme is needed to reduce development and lifecycle costs of future military air programmes. For this reason the programme has a specific focus on combat-air mission systems but the underlying technology is general purpose, applying to multiple military and civil domains. At present, the programme has defined a concept, delivered a set of initial technical standards and produced a joint demonstrator to validate the technology developed.
Technical Paper

Performance Validation of a Cooling Generation System for a Pilot Thermal Garment

2001-07-09
2001-01-2155
Pilots in fighter aircraft can be subjected to high temperatures during ground operating phases in hot climate conditions, especially if APU mode is not available. A Cooling Generation System (CGS) used with a protective thermal garment for fighter aircraft pilots has been developed that allows cooling of the pilot in the cockpit. The unit is designed to operate under worst case conditions and requires only that the pilot plugs in upon entering the cockpit. A liquid circulates inside the garment that covers the pilot’s torso, arms and head (area under the helmet). The temperatures are defined to guarantee the user’s comfort. The pilot can adjust the power delivered by the CGS, i.e. the temperature of the circulating fluid, up to a maximum cooling capacity of 400 W. The CGS design is based on a small variable speed compressor with a brushless motor, which is the outcome of a dedicated development, and a custom-made evaporator and condenser for maximum efficiency and minimum volume.
Technical Paper

Model-Based Safety Assessment for the Three Stages of Refinement of the System Development Process in ARP4754A

2011-10-18
2011-01-2548
Model Based Safety techniques have been developed for a number of years, though the models have not been customised to help address the safety considerations/ actions at each refinement level. The work performed in the MISSA Project looked at defining the content of “safety models” for each of the refinement levels. A modelling approach has been defined that provides support for the initial functional hazard analysis, then for the systems architectural definition level and finally for the systems implementation level. The Aircraft functional model is used to apportion qualitative and quantitative requirements, the systems architectural level is used to perform a preliminary systems safety analysis to demonstrate that a system architecture can satisfy qualitative and quantitative requirements.
Technical Paper

European EVA Space Suit: Full Scale Evaluations and Analysis for the Lower Torso Conceptual Design

1993-07-01
932099
In the frame of the development of the European EVA Suit, a complete trade-off was conducted to select the lower torso architecture. This study, performed under an ESA contract, included a formal trade-off dealing with all cost and programmatic impacts together with a technical assessment based on man rated underwater evaluations and analysis. The candidate architectures were: the European baseline including 2 hip and 2 thigh bearings, the Russian like soft ORLAN-DMA, a soft lower torso including 2 thigh bearings and another soft one including 2 calf bearings. The idea was to compare the different design performances without having necessarily developed the 4 pressurized lower torsos and then also to gain experience on predicting methods for such ergonomic/kinematic studies. The trade-off was based on the manned underwater evaluation of ergonomical suit simulators (wet suit concept), supported by the 1-g pressurized evaluation of the Russian ORLAN-DMA and CAD-CAM kinematic analysis.
Technical Paper

FACAI - A Flexible Assembly Cell for Aeronautical Industry

1993-09-01
931770
The Flexible Assembly Cell for Aeronautical Industry (FACAI) is described. The cell was developed in order to take advantage of the benefit of hard automation while retaining the flexibility of the manual assembly system it replaces. A description of both the generic equipment, selected to be non-specific to both the process and the assemblies intended to be built, is provided. In addition, all specific hardware, including end-effectors and fastener distribution systems are described, along with the rationale for their choice. The reasons for the modular design are explained. The means by which the flexibility goal was achieved are outlined. The demonstrated ability of the cell to install a wide range of fasteners (solid rivets, lockbolts, Hilocks) without the need for manual reconfiguration is detailed. The means by which both the quality and safety goals were attained are explained.
Technical Paper

Development of a 500 hPa Shoulder Joint for the European EVA Space Suit System

1992-07-01
921257
This paper synthesizes the shoulder joint development activities performed in the frame of the European EVA Space Suit System (ESSS) programme. The shoulder joint belongs to the anthropomorphic enclosure encompassing the crewmember, protecting him against space environment while ensuring him adequate mobility, dexterity and visibility. A conceptual trade-off selected two candidates likely to fulfil the stringent shoulder joint requirements: an all-soft joint and a hybrid “rolling convolute”. Representative pressurized breadboards were designed, manufactured and tested. The tests addressed both intrinsic performance, via torque/flexion hysteresis curves and ergonomic characteristics via a “man in the loop” evaluation, involving a suit demonstrator. Tests results completed the trade-off, thus enabling the industrial team to formulate recommendations and propose further development studies.
Technical Paper

Potential Improvements in Turbofan’s Performance by Electric Power Transfer

2018-10-30
2018-01-1962
Bleeding in engines is essential to mitigate the unmatched air massflow between low and High Pressure (HP) compressors at low speed settings, thus avoiding unstable operation due to surge and phenomena. However, by emerging the More Electric Aircraft (MEA) the engine is equipped with electrical machines on both high and Low Pressure (LP) spools which enables transfer of power electrically from one spool to another and hence provides the opportunity to operate engine core components closer to their optimum design point at off-design conditions. At lower power setting of the engine, HPC speed can be increased by taking power from LP shaft and feeding it to HP shaft which can lead to the removal of the bleeding system which in turn reduces weight and fuel consumption and help to overcome engine instability issues. Fuel consumption can be decreased by decreasing inconsistent thrust with the aircraft mission for flight and ground idle settings.
Technical Paper

Automated Assembly of Aircraft Structures at Avcorp Industries Inc., Aerostructures Division

1999-10-06
1999-01-3427
Avcorp Industries Inc. recognized the need to reduce assembly labor costs in order to stay competitive with global competition. After two years of research and investigation it was determined that a joint project with Dassault Aviation provided the most viable solution. The key elements of the technology developed by Dassault were its high flexibility and rapid payback of capital investment. This paper describes the system and the application. The structure’s design and robotic system design were performed in parallel. A number of design challenges had to be overcome. Many of these issues encountered were common to any automated assembly application. By covering these challenges Avcorp was able to introduce automated assembly at a level that had typically been previously attained exclusively by much larger enterprises. The robotic system consists of two anthropomorphic robots, which work both individually and in tandem.
Technical Paper

Focus on Challenges in SLD Regime: Reemitted Droplet Modelling

2019-06-10
2019-01-2001
A lot of studies have been carried out over the last decades on SLD ice accretion challenges. Many of them referred to SLD physics modelling such as break-up, splashing, bouncing, etc… and relied on numerous physics experiments. Different models have been developed in Europe and North-America and have been implemented in several numerical tools, widely in 2D but more and more in 3D. As these tools are intended to be used increasingly among the community, deficiencies have to be deeper investigated. This paper provides some highlights on specific needs linked to SLD impingement and ice accretion, especially for 3D high fidelity computations. Regarding the results, deficiencies on the numerical side and on experimental needs will be highlighted in order to feed brainstorming for ongoing SLD projects such as in European Union H2020 ICE-GENESIS.
Technical Paper

Runback Water Behavior on Hydro-phobic/philic Surfaces of Circular Cylinder Placed in Flow Field

2015-06-15
2015-01-2158
Coating has been recently considered as having good potential for use in preventing in-cloud icing on the leading edge of the lifting surfaces of an aircraft in cold climates. In terms of wettability, a coat may exhibit hydrophobicity or hydrophilicity depending on its specific properties. The same applies to the ice adhesion strength, which may be either high or low. It is thus necessary to determine which type of anti-icing or de-icing coat would be appropriate for a particular application in order to fully utilize its specific properties. Notwithstanding, a coat is incapable of preventing ice accretion by itself, and a perfect icephobic coat is yet to be developed. Coating is also sometimes applied to the surfaces of electrical heaters and load-applying machines to enable them to function more effectively and use less energy. The coating used for an electric heater, for instance, should be hydrophobic because of the need for rapid removal of molten water from the surface.
X