Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Use of Tinted Reflectors to Eliminate False Positives in Adaptive Lighting Control Systems

2009-07-12
2009-01-2380
The High Efficiency Solid State Lighting with Integrated Adaptive Control (HELIAC) system was developed to independently detect the presence of green plant tissue and to direct light only to those locations. During testing of the HELIAC system, a major factor interfering with effective tissue detection was reflectance of sensed wavebands from the walls and ceiling causing false positives. Since it is desirable to have reflective surfaces to maintain higher light levels with less power, selective reflection systems that absorb some wavebands but reflected others were tested. A test device was fabricated to measure the reflection of red, green, and blue light from a variety of colored mirrors. It was observed that both pink and purple tinted mirrors reduced the reflection of green wavebands more than red and blue wavebands. This effect could also be obtained by using colored films attached to a silvered mirrored surface.
Technical Paper

Analysis of Crew Interaction with Long-Duration Plant Growth Experiment

2003-07-07
2003-01-2482
The Biomass Production System (BPS) was flown on the ISS for 73 days as part of the Increment 4 mission. To obtain maximum benefit from the long mission duration, numerous manual crew procedures were incorporated into the BPS experiments. These procedures included gas sampling, root module priming, harvesting, pollination, filter cleaning, water refill, and water sampling. On-orbit crew assessments were filled out for each of these procedures to evaluate the ability of BPS to accommodate them. The assessment asked questions about each phase of an activity and solicited recommendations for improvements. Further analysis of most procedures was provided by detailed video made on-orbit and multiple post-flight crew debriefs. Most assessments indicated no need for improvements, but a number of crew suggestions will be incorporated into hardware and procedure updates.
Technical Paper

Biomass Production System Hardware Performance

2003-07-07
2003-01-2484
The Biomass Production System, recently flown on the ISS for 73 days, demonstrated significant advancements in functional performance over previous systems for conducting plant science in microgravity. The Biomass Production System (BPS) was the first flight of a system with multiple, independently controlled, plant growth chambers. Each of four chambers was controlled separately with respect to temperature, humidity, light level, nutrient level, and CO2, and all were housed in a double Middeck locker-sized payload. During the mission, each of the subsystems performed within specification. This paper focuses on how the performance of the BPS hardware allowed successful completion of the preflight objectives.
Technical Paper

PRU, The Next Generation of Space Station Plant Research Systems

2003-07-07
2003-01-2527
Based upon the development experience and flight heritage of the Biomass Production System, the Plant Research Unit embodies the next generation in the evolution of on-orbit plant research systems. The design focuses on providing the finest scientific instrument possible, as well as providing a sound platform to support future capabilities and enhancements. Performance advancements, modularity and robustness characterize the design. This new system will provide a field ready, highly reliable research tool.
Technical Paper

Plant Research Unit - Program Overview and Update

2002-07-15
2002-01-2279
The Plant Research Unit (PRU) is the Space Station Biological Research Program plant growth facility being developed for the International Space Station. The plant habitat is designed for experiments in near-zero gravity or it can be rotated by the ISS Centrifuge for experiments at any gravity level from microgravity to twice Earth's gravity. Plant experimentation will be possible in multiple Plant Research Units at one time, isolating the effect of gravity on the biological specimens. The PRU will provide and control all aspects of a plant's needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut's environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, nutrient delivery, and air filtering and cleaning must be done in a very small volume, with very little mass and power usage and with minimal crew time.
Technical Paper

Evolution of Advanced Life Support Architectures Throughout the Exploration Spirals: A Midterm Review

2005-07-11
2005-01-2922
The ECLSS (Environmentally Controlled Life Support System) project goals are to identify key requirements and guidelines for a Life Support System (LSS) for surface missions based on the Exploration Spirals, to review the various technology options and candidates to fulfill the life support functionality, and to conduct initial trades and assessments at a high level. With the completion of the first six month phase of the project, ORBITEC has generated and shown that for each Exploration Spiral, different LSS architectures are optimal, but when an entire mission model is considered, hybrid systems become more attractive. Also, we can easily show that future spiral requirements should and will influence the technologies and level of closure for earlier spiral developments to reduce overall development and implementation costs, and to increase commonality across the Constellation systems.
Technical Paper

ISRU Technologies to Support Human Space Exploration

2004-07-19
2004-01-2315
In-situ resource utilization (ISRU) is an important part of current mission architectures for both a return to the Moon and the eventual human exploration of Mars. ORBITEC has developed and demonstrated an innovative direct energy processing approach for carbon-reduction of lunar and Martian regolith that can operate in a nearly closed-loop manner. Carbon-reduction of regolith produces oxygen and a variety of other useful products, including silicon, iron and glass ceramic materials. In addition, various ISRU propulsion technologies that utilize lunar and Martian resources have been developed and demonstrated. Work is also being conducted with the USDA on techniques to use biomass and waste materials to manufacture items such as shelters, furniture, filters and paper. Atmospheric carbon dioxide on Mars would be used to support the production of biomass in excess of life support needs to be used as the raw material to manufacture useful products on-site.
Technical Paper

Space Plants in the Classroom

2004-07-19
2004-01-2417
A common question for students to ask educators is “When am I ever going to use this?” An excellent way to answer that question is to demonstrate how interrelated many subjects are. At ORBITEC in Madison, WI, we are developing systems to help teachers demonstrate the exciting interrelationships of science, math and technology using activities related to growing plants in space. We are developing two portable plant growth systems that integrate multiple disciplines, enriching students’ classroom experiences. Each portable growth unit is based on similar principles. The Space Garden and Biomass Production Education System (BPES) are growth units for indoor use that utilize a bellows technology to create a greenhouse-like environment. The Space Garden is a personal growth unit that a student can use individually while the BPES will be 0.25 m2, allowing larger-scale experimentation. The Space Garden will be best used in classrooms of grades four through seven.
Technical Paper

Plant Research Unit Lighting System Development

2004-07-19
2004-01-2454
As part of the PRU project a new plant lighting system has been developed. System design focused on light source development, chamber optical performance improvements and electronics optimization. Central to the lighting system performance is a high density LED Light Engine, enabling increased spectral diversity, higher irradiance levels, enhanced uniformity and improved efficiency. Chamber wall surface materials were tested to minimize the vertical irradiance gradient and improve planar uniformity. Total lighting system efficiency was improved through the use of switching converter LED drive circuitry. As an alternative to the LED light source, an advanced planar fluorescent lighting source has also been developed.
X