Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Nitrification using a Membrane-Aerated Biological Reactor

2003-07-07
2003-01-2559
When compared to physical and chemical processes for wastewater treatment in space, the benefits of biological systems include reduced storage and handling of waste material, lower energy requirements and plant growth system compatibility. An advanced membrane reactor (AMR) was constructed to treat ammonium-rich simulated wastewater. The effluent pH was approximately 6.3, and ammonium and TOC reduction rates were greater than 60 percent and 99 percent, respectively. The experimental results demonstrate that this technology may be suitable for space applications. However, the long-term performance of these systems should be investigated.
Technical Paper

Biologically Treated Wastewater for NFT Plant Production in Space

2003-07-07
2003-01-2681
This research compared the nutrient content of the Biological Water Processor (BWP) effluent at JSC with acceptable nutrient ranges for general hydroponic NFT-solutions. Evaluated nutrient-components were NO3-N, P, K, Ca, Mg, Fe, Mn, Zn, B, Cu and Mo. Compared to Cooper's and Molyneaux's solution (Jones, 1997) BWP-nutrient concentrations were low for Ca, Mg, Fe and B. Compared to the NFT-solution used at KSC (Wheeler et al., 1997), the BWP-effluent showed higher contents of P, K, Zn, Cu and Mo and lower contents of N, Ca, Mg, Fe and B. This indicates that the BWP-effluent could support NFT-plant production.
Technical Paper

Incorporation of a Membrane-Aerated Bioreactor in a Water Recovery System

2004-07-19
2004-01-2461
The objective of this study was to investigate the potential of membrane-aerated bioreactors as long term microgravity compatible nitrifying biological water processors (BWP). A small-scale (1/20th) replica of the water recovery system (WRS) at JSC has been operated and extensively analyzed at Texas Tech University (TTU) for the last 3 years. The current nitrifying tubular reactor at JSC and TTU has experienced difficulty in maintaining efficiency and low maintenance. In an attempt to increase the efficiency of the biological portion of the WRS, a membrane-aerated bioreactor (MABR) was constructed and operated using the same parameters as the TTU-WRS in August 2003. The MABR is downstream of an anaerobic packed bed and is designed to promote nitrification (NH4 → NOx). The MABR achieved a percent nitrification of 61% and 55% for recycle ratios of 10 and 20, respectively.
Technical Paper

Modeling a Biological Closed Loop Water Recycling System for Prolonged Manned Space Flight

2004-07-19
2004-01-2511
For prolonged manned spaceflight, recycling of wastewater is critical to minimize payload costs. We have constructed a pilot-scale, closed-loop water recycling system (CLWRS). Due to slow process dynamics, evaluation of multiple experimental scenarios is very time-consuming. To accelerate evaluation, we have developed mathematical models of the individual reactors, as well as a process model of the pilot plant, which combines nitrification, denitrification, recycle, and degassing steps. The simulation accurately reproduces the 35% total nitrogen (TN) reduction observed experimentally at a 20/1 recycle ratio. Both experiments and simulations indicate that biological CLWRS have significant potential for long-duration manned space flight.
X