Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Continued Research in EVA, Navigation, Networking and Communication Systems

2008-06-29
2008-01-2029
This paper summarizes the results of our continued testing of a radio based, non-Global Positioning System (GPS) navigation and communications system. The system has been integrated with two mobile computers, a robot and four work stations. It demonstrated crewmember interfaces for acquiring, storing and transmitting data from a space suit life support system simulation, test subject Electrocardiogram (ECG) and other biomedical data. This is an extension of the functions which were tested last year during the NASA Desert Research and Technology Studies (RATS) 2006 activities at both Johnson Space Center in Houston Texas and at Meteor Crater near Flagstaff Arizona. We added considerable complexity to the tests. The tests were conducted on an accurate series of geo-referenced paths at the El Toro Marine Air Station, a closed air field.
Technical Paper

EVA Exploration Support Using Integrated Navigation, Networking and Communications Systems

2007-07-09
2007-01-3087
In future lunar and Mars exploration missions the ability to provide the crewmember navigation information will be critical. Exploration demands that Extravehicular Activity (EVA) astronauts be provided the capability to operate with greater autonomy in accomplishing complex EVA missions than has been the case previously. Robust crew information interfaces and navigation support integral to the EVA spacesuit system are expected to be minimum requirements. Navigation support must allow the EVA crew to determine their position relative to EVA target locations, satellite imagery and maps and assist them in walking or riding to the desired targets on the planetary surface. Together, these needs suggest a requirement for an integrated system that combines data and voice communications, a high performance visual display, and navigation support in a design that is compatible with spacesuit environmental and packaging restrictions and with unique EVA crew interface demands.
Technical Paper

U.S. Army Helicopter Icing Developments

1982-02-01
821504
Information on icing flight tests as conducted by the US Army Aviation Engineering Flight Activity is presented. A quick review is conducted of organizations within the US Army that become involved with icing tests. Icing flight test techniques and hardware are shown and discussed. Natural and artificial icing test results are compared. Results and conclusions from previous icing evaluations are shown. The capabilities and limitations of current techniques and systems are discussed. And finally, the process for establishing an airworthiness qualification allowing Army aircraft to fly into a forecast icing environment is presented.
Technical Paper

Production of P/M Near-Net Shape superalloy Hardware

1982-02-01
821515
Powder metallurgy (P/M) technology has been identified as a major means for reducing critical element usage for superalloy turbine engine hardware. Utilizing quality and process control, a P/M process has been successfully developed and applied to producing hardware for General Electric's T700 engine used in the Army's Blackhawk helicopter. Utilizing the process, a cost saving of approximately $3000 per engine has been realized and a weight reduction of 40 lbs of superalloy starting material per engine has been achieved. Over 6000 parts have been produced to date and more than 800 engines have been delivered. The high time engine has achieved over 1900 hours operating time. A total of over 200,000 engine operating hours have been accumulated by as-HIP turbine hardware. This engine experience and mechanical property data show that the P/M process is capable of producing high quality reliable hardware for turbine engine applications.
Technical Paper

Advancements in Control/Display Systems for Army Helicopters

1982-02-01
821405
A new generation of Army helicopter crew station is being developed today to meet the challenges of missions required by Army Aviation. The scout mission exemplifies the demands that can be placed upon the aircraft and crew. Scout missions require nap-of-the-earth (NOE) flight during day, night, and adverse weather conditions. Such a requirement demands the highest degree of compatibility between aircraft systems and crew. To meet this challenge, the US Army is currently developing an improved scout helicopter called the Army Helicopter Improvement Program (AHIP). Several enhancements and innovations in crew station design are an integral part of the program. Improvements in the AHIP control/display system reduce head-down cockpit activities allowing more time for head-up flight of the aircraft; especially important during NOE flight.
X