Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 89
2012-08-28
WIP Standard
AIR5024A
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices when used on landing gears. It also contains information, which may be helpful, when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines.
2014-04-17
WIP Standard
AIR1810D
This document examines the most important considerations relative to the use of proximity sensing systems for applications on aircraft landing gear. In general, the recommendations included are applicable to other demanding aircraft sensor installations where the environment is equially severe.
2015-12-03
WIP Standard
AIR1594D
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document.
2016-03-17
WIP Standard
ARP6412
The scope of the Landing Gear Integrity Programs (LGIP) Aerospace Recommended Practice (ARP) is intended to assist in the safe-life structural integrity management of the landing gear system and subsystems components. In addition, component reliability, availability, and maintainability is included in a holistic LGIP.
2008-05-14
WIP Standard
ARP5569
This Aerospace Recommended Practice (ARP) will cover normal and emergency landing gear retraction/extension systems. This includes all equipment necessary for the control and sensing of the components used for raising and lowering the gear, up-locking and down-locking the gear, opening and closing the associated landing gear doors, and any latching of this equipment. The document will provide recommended practices for the use of conventional technologies and for those newer technologies now coming into use. It will include the regulatory and other safety requirements for these systems together with recommendations for; sequencing and timing, sensor selection, and failure monitoring of both normal and emergency operation and the support of maintenance and test needs.
2016-11-03
WIP Standard
AIR6805
This document will outline existing best practices in the instrumentation of landing gears for in-service operation (including flight test, operational loads monitoring, etc.).
2015-10-19
WIP Standard
AS6350
Recent Salt-Fog environmental qualification testing in accordance with RTCA/DO-160G, Paragraph 14, Category S identified both discrepancies in the performance specification documents and potential in-service corrosion problems with the charging valve. A new SAE AS for Valve; Aircraft, Pneumatic, High-Pressure Charging is necessary to resolve these items.
2016-01-05
WIP Standard
AIR5885A
This document outlines the most common repairs used on landing gear components. It is not the intention of this AIR to replace Overhaul/Component Maintenance or Technical Order Manuals, but it can serve as a guide into their preparation. This document may also be used as a template to develop an MRB (Material Review Board) plan. The recommendations in this document apply to components made of metallic alloys. These recommendations are intended for new manufactured components as well as for overhauled components. The extent of repair allowed for new components as opposed to in-service components is left to the cognizant engineering authorities. Reference could be made to this document when justifying repairs on landing gears. For repairs outside the scope of this document, a detailed justification is necessary. It must be understood that all the repairs listed in this document are not to be applied without the involvement of the cognizant engineer.
2016-01-04
WIP Standard
AIR5552A
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
2013-09-27
WIP Standard
ARP5908A
The present document addresses gas and hydraulic fluid servicing required on commercial and military aircraft landing gears, for both single and dual chamber shock struts.
2016-03-14
WIP Standard
AS6409
Provide specifications for hydraulic fluids used in landing gear shock struts. Some of this information was previously in AIR5358 however specifications should be in an AS. This new document will contain the appropriate specifications for premixed hydraulic fluid with additives believed to improve fluid performance and reduce friction.
2017-03-22
WIP Standard
AIR5913A
The purpose of this report is to outline the type of damage referred to as “Ladder Cracking”. Discuss how it is being repaired and describe the use of a bearing material that has resolved this problem without introducing other problems.
CURRENT
2012-10-03
Standard
AS665A
CURRENT
2016-05-06
Standard
AIR5358A
This document describes fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication.
CURRENT
2011-10-20
Standard
ARP4915B
This document establishes a procedure for disposition of landing gear components that have been involved in accidents/incidents. The recommendations in this document apply to components made of ferrous and non-ferrous alloys. The recommendations in this document do not apply to components made of non metallic composite materials.
HISTORICAL
2001-06-01
Standard
ARP4915A
This document establishes a procedure for disposition of landing gear components that have been involved in accidents/incidents. The recommendations in this document apply to components made of ferrous and non-ferrous alloys.
HISTORICAL
2006-04-25
Standard
AS8860
This specification contains landing gear strength and rigidity requirements, which, in combination with other applicable specifications, define the structural design, analysis, test, and data requirements for fixed wing piloted airplanes.
CURRENT
1994-06-01
Standard
AS4832
This SAE Aerospace Standard (AS) offers gland details for a 0.364 cross section gland (nominal 3/8 in) with proposed gland lengths for compression type seals with two backup rings over a range of 8 to 20 in in diameter. A dash number system is proposed similar to AS568A. A 600 series has been chosen as a logical extension of AS568A and the 625 number has been arbitrarily chosen for the initial number. (Both 300 and 400 series begin with 325 and 425 sizes.) Seal configurations and design are not a part of this document. This gland is for use with custom compression type seals including, but not limited to, O-rings, T-rings, D-rings, etc.
CURRENT
2015-07-04
Standard
AIR4004A
Recent field experience has indicated significant problems with some types of wire and cables as routed on aircraft landing gear. This SAE Aerospace Information Report (AIR) is intended to identify environmental concerns the designer should consider, materials that appear to be most suitable for use in these areas, routing, clamping, and other protection techniques that are appropriate in these applications. In recent years aircraft certification regulatory agencies introduced new regulations regarding Electrical Wiring Interconnection Systems (EWIS) to further enhance safety of the associated systems and aircraft overall.
CURRENT
2010-04-13
Standard
AIR1494B
Verification of landing gear design strength is accomplished by dynamic and static test programs. This is essentially a verification of the analytical procedures used to design the gear. An industry survey was recently conducted to determine just what analysis and testing are currently being applied to landing gear. Timing in relation to first flight of new aircraft was also questioned. Opinions were solicited from designers of the following categories and/or types of aircraft: a. military - large land based (bomber); b. mililtary - small land based (fighter); c. military - carrier based (Navy); d. military - helicopter (large); e. military - helicopter (small-attack); f. commercial - large (airliner); g. commercial - small (business); and h. USAF (WPAFB) - recommendations. It is the objective of this AIR to present a summary of these responses.
CURRENT
2010-07-15
Standard
AIR1594C
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
CURRENT
2003-01-08
Standard
AIR1810C
This document examines the most important considerations relative to the use of proximity sensing systems for applications on aircraft landing gear. In general, the recommendations included are applicable to other demanding aircraft sensor installations where the environment is equally severe.
CURRENT
1997-07-01
Standard
AIR1800A
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
CURRENT
1996-06-01
Standard
AIR1752A
The intent of this AIR is twofold: (1) to present descriptive summary of aircraft nosewheel steering and centering systems, and (2) to provide a discussion of problems encountered and “lessons learned” by various airplane manufacturers and users. This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new “lessons learned” become available.
CURRENT
2006-05-19
Standard
AIR5883
This document defines the criteria used for the selection of landing gear shock strut upper and lower bearings.
HISTORICAL
2004-01-30
Standard
AIR5358
This SAE Aerospace Information Report (AIR) was prepared by a panel of the SAE A-5 Committee. This document establishes the specifications for fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication. This document requires qualified products.
CURRENT
2010-10-07
Standard
AIR5552
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
HISTORICAL
1997-03-01
Standard
ARP1595A
This document provides recommended practices for the design, development, and verification testing of aircraft nosewheel steering (NWS) systems.
CURRENT
2011-01-03
Standard
AIR5938
This document provides information on the current practices used by commercial and military operators in regards to hard landings (or overload events designated as hard landings). Since detailed information on inspections would be aircraft specific, this AIR provides only a general framework. Detailed information and procedures are available in the maintenance manuals for specific aircraft. Because hard landings potentially affect the entire aircraft, guidelines are listed here for non-landing gear areas. But, the primary focus of the document is the landing gear and related systems. The document may be considered to be applicable to all types of aircraft. This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP 4915 and ARP 5600.
CURRENT
2004-12-01
Standard
AIR5885
This document outlines the most common repairs used on landing gear components. It is not the intention of this AIR to replace Overhaul/Component Maintenance or Technical Order Manuals, but it can serve as a guide into their preparation. This document may also be used as a template to develop an MRB (Material Review Board) plan. The recommendations in this document apply to components made of metallic alloys. These recommendations are intended for new manufactured components as well as for overhauled components. The extent of repair allowed for new components as opposed to in-service components is left to the cognizant engineering authorities. Reference could be made to this document when justifying repairs on landing gears. For repairs outside the scope of this document, a detailed justification is necessary. It must be understood that all the repairs listed in this document are not to be applied without the involvement of the cognizant engineer.
Viewing 1 to 30 of 89