Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 47
2017-08-09
WIP Standard
AS42702
This document establishes techniques for verifying that a Mission Store Interface (MSI) complies with the interface requirements delineated in MIL-STD-1760 Revision E.
CURRENT
2009-10-28
Standard
AS42701
This document establishes techniques for validating that a mission store complies with the interface requirements contained in MIL-STD-1760 Revision D.
CURRENT
2017-01-12
Standard
AS5609A
This SAE Aerospace Standard (AS) defines the editorial format and policies necessary for the publication of Interface Control documents. The Common Interface Control Document Format Standard defines a common format for aircraft/store interface documents to foster increased interoperability. It is designed with the versatility to serve differing “ICD” philosophies and organizations. This aerospace standard defines the common technical data sections for the Common Interface Control Document Format down to the third header level for the majority of sub-sections. The Common Interface Control Document Format Aerospace Standard provides a structured document format in appendixes supported by example paragraphs, drawings, etc.
HISTORICAL
1991-08-01
Standard
AIR4013
This SAE Aerospace Information Report (AIR) will examine network aspects of open and shorted stubs, line reflections and bus loading due to network changes. Single network level is assumed, that is, no carriage store hierarchical levels. However, two passive network coupling variants called "branched bus" and "branched stub" will be introduced that possibly could be used in a stores management network. This report assumes familiarity with MIL STD 1553B.
CURRENT
2012-08-22
Standard
AIR4013C
This SAE Aerospace Information Report (AIR) will examine network aspects of open and shorted stubs, line reflections and bus loading due to network changes. Single network level is assumed, that is, no carriage store hierarchical levels. However, two passive network coupling variants called "branched bus" and "branched stub" will be introduced that possibly could be used in a stores management network. This report assumes familiarity with MIL-STD-1553B.
CURRENT
2012-08-27
Standard
AIR5788A
This document specifies the CLARA interfaces of the CLAR Truth Data Generator as shown in Figure 1. The solid bold arrows are defined in Table 1 and Table 2. The dashed arrows from the CLAR Coefficient Generator and Truth Database to the CLAR Data Space Generator indicate a feedback loop and are defined in the CLAR Data Space Generator ICD (Reference 1). The dashed arrow from the Truth Database to the CLAR Coefficient Generator is defined in the CLAR Coefficient Generator ICD (Reference 2). The objective for the CLAR Truth Data Generator is to produce impact data sets to be used in the CLAR Coefficient Generator first to score and form LAR boundaries, and then to generate coefficients. A model of the weapon system that predicts weapon delivery performance to a predefined accuracy is to be used for this purpose. The model can be the Six-Degree-Of-Freedom (6DOF) equations of motion or another mathematical representation that meets the objective for the weapon system LAR.
CURRENT
2012-08-27
Standard
AIR5720A
The technical architecture defined in this document outlines mandatory, emerging, and needed standards to provide interoperability at key interfaces in the aircraft/store system (including an associated NATO Network Enabled Capability environment), as required to support a future plug-and-play aircraft/store integration capability. These standards relate to services and protocols associated with the subject interfaces. Modeling standards to facilitate the Model Driven Architecture® (MDA®) approach to system definition and implementation are also included. Note that the status of referenced standards as reflected in this document is as of August 2007, and document users should check to see if there has been a subsequent change of status relative to applicable standards.
CURRENT
2016-09-16
Standard
AIR6114
This document was prepared by the SAE AS-1B1 IMM Task Group to explain and document background information and design decisions made during the development of AS5726. This handbook is published separately to preserve information that is not required or provided in the AS5726 but may be important to system designers to ensure interoperability between the Micro Munition Host and Micro Munition. As a handbook, it cannot be invoked as a requirement in a contract. The structure and numbering of this document mirrors that of AS5726 for the convenience of readers. Headings such as “Requirements” in this handbook should not be interpreted as invoking requirements.
CURRENT
2016-11-18
Standard
AIR6234
This Handbook is intended to provide useful information on the application of AS5716A. It is for use by System Program Offices, aircraft prime contractors, avionics and store system designers, system integrators and equipment manufacturers and users. This Handbook was prepared to provide users of the standard of the rationale and principles considered during the development of the standard. It is anticipated that the handbook will serve to assist developers in introducing new technology to achieve compliance with the standard and the underlying principles of the standard. It is intended that the Handbook be used alongside the standard, as it does not contain significant extracts of the standard.
HISTORICAL
2004-07-22
Standard
AS5609
This SAE Aerospace Standard (AS) defines the editorial format and policies necessary for the publication of Interface Control documents. The Common Interface Control Document Format Standard defines a common format for aircraft/store interface documents to foster increased interoperability. It is designed with the versatility to serve differing “ICD” philosophies and organizations. This aerospace standard defines the common technical data sections for the Common Interface Control Document Format down to the third header level for the majority of sub-sections. The Common Interface Control Document Format Aerospace Standard provides a structured document format in appendixes supported by example paragraphs, drawings, etc.
HISTORICAL
2005-09-29
Standard
AIR4013B
This SAE Aerospace Information Report (AIR) will examine network aspects of open and shorted stubs, line reflections and bus loading due to network changes. Single network level is assumed, that is, no carriage store hierarchical levels. However, two passive network coupling variants called "branched bus" and "branched stub" will be introduced that possibly could be used in a stores management network. This report assumes familiarity with MIL-STD-1553B.
HISTORICAL
1996-08-01
Standard
AIR4013A
This SAE Aerospace Information Report (AIR) will examine network aspects of open and shorted stubs, line reflections and bus loading due to network changes. Single network level is assumed, that is, no carriage store hierarchical levels. However, two passive network coupling variants called "branched bus" and "branched stub" will be introduced that possibly could be used in a stores management network. This report assumes familiarity with MIL-STD-1553B.
CURRENT
2012-08-27
Standard
AIR5712A
This document was developed by the SAE AS-1B5 CLARA Task Group to explain and document background information and decisions with associated rationale made in development of the CLARA Interface Control Document (ICD), AIR5682. This rationale document is published separately to preserve information that is not required or provided in the ICD but may be important to users.
HISTORICAL
2008-10-23
Standard
AIR5712
This document was developed by the SAE AS-1B5 CLARA Task Group to explain and document background information and decisions with associated rationale made in development of the CLARA Interface Control Document (ICD), AIR5682. This rationale document is published separately to preserve information that is not required or provided in the ICD but may be important to users.
CURRENT
2012-08-27
Standard
AIR5682A
CLARA identifies four functions: Data Space Generator, Truth Data Generator, Coefficient Generator, and Reconstructor. Together these four functions standardize the solution to the LAR problem. This ICD defines the logical interfaces of the four functions.
HISTORICAL
2007-05-09
Standard
AIR5682
CLARA identifies four functions: Data Space Generator, Truth Data Generator, Coefficient Generator, and Reconstructor. Together these four functions standardize the solution to the LAR problem. This ICD defines the logical interfaces of the four functions.
HISTORICAL
2005-05-20
Standard
AIR5788
This document specifies the CLARA interfaces of the CLAR Truth Data Generator as shown in Figure 1. The solid bold arrows are defined in Table 1 and Table 2. The dashed arrows from the CLAR Coefficient Generator and Truth Database to the CLAR Data Space Generator indicate a feedback loop and are defined in the CLAR Data Space Generator ICD (Reference 1). The dashed arrow from the Truth Database to the CLAR Coefficient Generator is defined in the CLAR Coefficient Generator ICD (Reference 2). The objective for the CLAR Truth Data Generator is to produce impact data sets to be used in the CLAR Coefficient Generator first to score and form LAR boundaries, and then to generate coefficients. A model of the weapon system that predicts weapon delivery performance to a predefined accuracy is to be used for this purpose. The model can be the Six-Degree-Of-Freedom (6DOF) equations of motion or another mathematical representation that meets the objective for the weapon system LAR.
HISTORICAL
2008-01-16
Standard
AIR5720
The technical architecture defined in this document outlines mandatory, emerging, and needed standards to provide interoperability at key interfaces in the aircraft/store system (including an associated NATO Network Enabled Capability environment), as required to support a future plug-and-play aircraft/store integration capability. These standards relate to services and protocols associated with the subject interfaces. Modeling standards to facilitate the Model Driven Architecture® (MDA®) approach to system definition and implementation are also included. Note that the status of referenced standards as reflected in this document is as of August 2007, and document users should check to see if there has been a subsequent change of status relative to applicable standards.
HISTORICAL
2008-11-24
Standard
AIR5566
CLARA identifies four functions: Data Space Generator, Truth Data Generator, Coefficient Generator, and Reconstructor. Together these four functions standardize the solution to the LAR problem.
CURRENT
2012-08-22
Standard
AIR5532A
This SAE Aerospace Information Report (AIR) defines a Generic Aircraft-Store Interface Framework (GASIF). This is a common framework for modeling and specifying aircraft-store logical interfaces. GASIF complies with the OSI Basic Reference Model (ITU-T Rec. X.200 | ISO/IEC 7498-1) in that it describes operations and mechanisms which are assignable to layers as specified in the OSI Basic Reference Model. This AIR provides a mapping of the Interface Standard for Aircraft-store Electrical Interconnection System (AEIS), MIL-STD-1760, in Appendix C.
HISTORICAL
2003-06-06
Standard
AIR5532
This SAE Aerospace Information Report (AIR) defines a Generic Aircraft-Store Interface Framework (GASIF). This is a common framework for modeling and specifying aircraft-store logical interfaces. GASIF complies with the OSI Basic Reference Model (ITU-T Rec. X.200 | ISO/IEC 7498-1) in that it describes operations and mechanisms which are assignable to layers as specified in the OSI Basic Reference Model. This AIR provides a mapping of the Interface Standard for Aircraft-store Electrical Interconnection System (AEIS), MIL-STD-1760, in Appendix C.
CURRENT
2012-08-27
Standard
AIR5566A
CLARA identifies four functions: Data Space Generator, Truth Data Generator, Coefficient Generator, and Reconstructor. Together these four functions standardize the solution to the LAR problem.
CURRENT
2017-03-30
Standard
AS47643
This document establishes techniques for validating that an Aircraft Station Interface (ASI) complies with the interface requirements delineated in MIL-STD-1760 Revision E.
CURRENT
2017-06-27
Standard
AS4270A
This document establishes techniques for validating that a mission store complies with the interface requirements delineated in MIL-STD-1760.
CURRENT
2017-06-27
Standard
AS4764A
This document establishes techniques for validating that an aircraft station complies with the interface requirements delineated in MIL-STD-1760.
CURRENT
2017-06-28
Standard
AS47641A
This document establishes techniques for validating that an Aircraft Station Interface (ASI) complies with the interface requirements delineated in MIL-STD-1760B Notice 3. For validation of aircraft designed to MIL-STD-1760A Notice 2 AS4764 Issued 1995-04 applies.
HISTORICAL
1995-04-01
Standard
AS4270
This document establishes techniques for validating that a mission store complies with the interface requirements delineated in MIL-STD-1760.
HISTORICAL
1995-04-01
Standard
AS4764
This document establishes techniques for validating that an aircraft station complies with the interface requirements delineated in MIL-STD-1760.
HISTORICAL
1999-08-01
Standard
AS47641
This document establishes techniques for validating that an Aircraft Station Interface (ASI) complies with the interface requirements delineated in MIL-STD-1760B Notice 3. For validation of aircraft designed to MIL-STD-1760A Notice 2 AS4764 Issued 1995-04 applies.
HISTORICAL
2011-01-03
Standard
AS6030
This Common Interface Control Plan (CICP) establishes the methodology for developing, controlling and managing the technical interfaces between and within systems. The document is not intended to directly control any other aspects of program management, such as matters of contractual, financial or those of an intellectual property rights nature. Members in the interface control process include: procurement authorities, design authorities and other related agencies as defined in the specific System Interface Control Plan (SICP). For the purposes of this plan only the terms Procuring Organization and Producing Organization will be used. This plan is predicated upon formal agreements between participating organizations that provide: Authority to participate in Interface Control Working Group (ICWG) and decision making processes. Primary integration control, interface problem resolution, and interface impact assessments through the ICWG.
Viewing 1 to 30 of 47