Criteria

Text:
Sector:
Author:
Display:

Results

Viewing 1 to 30 of 34
2008-06-29
Technical Paper
2008-01-2141
Lance Delzeit, Michael Flynn
The Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology has undergone long duration testing at MSFC. The results of this testing revealed several areas in which the VPCAR Technology could be improved and those improvements are summarized here. These improvements include the replacement of several parts with units that are more durable, redesign of several pieces which proved to have mechanical weaknesses, and incorporation of some new designs in order to prevent other potential problems.
2006-07-17
Technical Paper
2006-01-2008
Sherwin Gormly, V. Dean Adams, Eric Marchand, Bailey Cannon, Michael Flynn
Presented is a synopsis of ongoing research into the development of techniques and hardware required to produce useable quantities of astrobiology relevant biomass under controlled and repeatable laboratory conditions. This study has developed microbial habitats (referred to as digesters, due to their biomass production function) capable of sustaining microbial communities under low temperature, high salt, high sulfate, anaerobic conditions. This set of basic conditions is necessary to develop biomass material that is analog to the biomass that would be present in subsurface brine habitats on Mars or Europa, from the perspective of several critical biochemical properties.
2006-07-17
Technical Paper
2006-01-2086
Tzahi Y. Cath, Joshua L. Cartinella, V. Dean Adams, Amy Childress, Sherwin Gormly, Michael Flynn
Direct osmotic concentration (DOC) has been identified as a potential wastewater treatment process for potable reuse in advanced life support systems (ALSS). As a result, further development of the DOC process is being supported by a NASA Rapid Technology Development Team (RTDT) program. DOC is an integrated membrane system combining three unique membrane separation processes including forward osmosis (FO), membrane distillation (MD), and reverse osmosis (RO) that is designed to treat separate wastewater streams comprising hygiene wastewater, humidity condensate, and urine. An aqueous phase catalytic oxidation (APCO) process is incorporated as post treatment for the product water. In an ongoing effort to improve the DOC process and make it fully autonomous, further development of the three membrane technologies is being pursued.
2006-07-17
Technical Paper
2006-01-2185
Zeng-Guang Yuan, Uday Hegde, Eric Litwiller, Michael Flynn, John Fisher
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)- driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
2006-07-17
Technical Paper
2006-01-2131
Charles Niederhaus, Henry Nahra, Michael Flynn
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
1996-07-01
Technical Paper
961521
James R. Akse, James E. Atwater, Leonard J. Schussel, John O. Thompson, Frank C. Garmon, Michael Flynn, Charles E. Verostko
The initial development effort is described for an electrochemical hydrogen peroxide generator and pervaporation module capable of producing and delivering hydrogen peroxide to a contaminated waste water stream as an oxidant or to a pure water stream for use as a disinfectant. A three chambered cell is used to generate hydrogen peroxide by a combined electrodialysis and electrochemical process. Each chamber is separated from its neighbor by a membrane allowing selective production of peroxide anions and hydrogen ions under controlled pH conditions followed by migration to form hydrogen peroxide. Concentrations greater than 6,500mg/L have been produced in this manner. The effects of voltage, pH, membranes, electrode materials, and method of oxygen introduction are delineated. Hydrogen peroxide is then transferred to the end-use stream by pervaporation. The impact of pH, relative flow rates, and ionic strength of sink and source solutions on pervaporation rates is detailed.
2003-07-07
Technical Paper
2003-01-2626
Gregory Quinn, James Fort, Badawi Tleimat, Maher Tleimat, Michael Flynn, Fredrick Smith
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
2002-07-15
Technical Paper
2002-01-2397
Badawi Tleimat, Maher Tleimat, Gregory Quinn, Michael Flynn, Fredrick Smith
This project is a Phase III SBIR contract between NASA and Water Reuse Technology (WRT). It covers the redesign, modification, and construction of the Wiped-Film Rotating-Disk (WFRD) evaporator for use in microgravity and its integration into a Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a water processor technology for long duration space exploration applications. The system is designed as an engineering development unit specifically aimed at being integrated into NASA Johnson Space Center's Bioregenerative Planetary Life Support Test Complex (BIO-Plex). The WFRD evaporator and the compressor are being designed and built by WRT. The balance of the VPCAR system and the integrated package are being designed and built by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) under a subcontract with WRT. This paper provides a description of the VPCAR technology and the advances that are being incorporated into the unit.
1997-07-01
Technical Paper
972271
Cliff Jolly, Michael Flynn
2001-07-09
Technical Paper
2001-01-2144
Michael Flynn, Philip Hammer, Zeev Rosenswig, Thuvan Nguyen, Wm. Haden Smith
The objective of this work was to determine if chemoautotrophic organisms exist in the vicinity of hydrothermal vents, specifically organisms that have the capability to utilize non-solar electromagnetic radiation. The discriminating criteria used to make this determination was the existence of, or lack of, chlorophyllic compounds in these organisms. Work conducted to this point indicates that pigment containing microbial species does exist within the hydrothermal vent microenvironment. Furthermore, it does appear that at least some of these pigments are bacteiochlorophylls. A question still remains unanswered, that is, are these organisms indigenous to the vent community or debris from surface environments?
2008-06-29
Journal Article
2008-01-2143
Sherwin Gormly, Tra-My Justine Richardson, Michael Flynn, Mark Kliss
The Lightweight Contingency Water Recovery System (LWC-WRS) harvests water from various sources in or around the Orion spacecraft in order to provide contingency water at a substantial mass savings when compared to stored emergency water supplies. The system uses activated carbon treatment (for urine) followed by forward osmosis (FO). The LWC-WRS recovers water from a variety of contaminated sources by directly processing it into a fortified (electrolyte and caloric) drink. Primary target water sources are urine, seawater, and other on board vehicle waters (often referred to as technical waters). The product drink provides hydration, electrolytes, and caloric requirements for crew consumption. The system hardware consists of a urine collection device containing an activated carbon matrix (Stage 1) and an FO membrane treatment element (or bag) which contains an internally mounted cellulose triacetate membrane (Stage 2).
2006-07-17
Technical Paper
2006-01-2083
Sherwin Gormly, Michael Flynn
This study introduces new concepts in the function and placement of membrane based water treatment processes in Exploration Life Support (ELS) System design. These differences are in both form and function and have the potential to radically alter the current paradigms of thought within the ELS research community with regards to the limitations of conventional membrane water treatment. More importantly, they have the potential to change the placement of water processing by quite literally moving it “out of the box”, or in the case of ELS, the standard rack volume. Two possible systems, extremely small scale personal urine treatment and recycle (CEV Lightweight Contingency Water Treatment) and a similar but scaled up habitat wall embedded membrane water treatment pouch, are used to demonstrate the concepts involved.
2005-07-11
Technical Paper
2005-01-3084
Eric Litwiller, Martin Reinhard, John Fisher, Michael Flynn
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents results of functional and performance tests.
2005-07-11
Technical Paper
2005-01-3033
Michael Flynn, Maher Tleimat, Tim Nalette, Gregory Quinn
This paper describes the results of performance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed a grant to develop a next generation VPCAR system. This grant concluded with the shipment of the final deliverable from Water Reuse Technology Inc. to NASA on August 31, 2003. This paper presents the results of initial performance testing of the VPCAR-EDU. Mass, power, volume, and acoustic measurements are reported. Product water purity analysis for a Mars transit mission and a planetary base simulated wastewater feeds are also reported.
2003-07-07
Technical Paper
2003-01-2332
Sherwin Gormly, V. Dean Adams, Tzahi Cath, Amy Childress, Michael Flynn, Edward Beaudry
For wastewater treatment applications, membrane processes are known to provide excellent treatment but are subject to failure due to membrane fouling. The Direct Osmotic Concentration (DOC) system evaluated in this study provides a membrane based primary treatment process capable of overcoming this problem. A full scale test apparatus containing full scale test module membrane cells has been developed and has undergone preliminary testing that provides a basis for comparison with other primary water recycle process concepts. This study confirms and extends the initial testing of this hardware and determines the required improvements to the existing test mo dules. These improvements, in addition to future testing, are intended to complete the validation of the concept and mature the hardware to the point that human rated test equipment design and development can be based directly on the test module derived data.
2006-07-17
Technical Paper
2006-01-2012
Michael Flynn, Sherwin Gormly
NASA is currently developing two new human rated launch systems. They are the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). Both of these spacecraft will require new life support systems to support the crew. These life support systems can also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80% of the mass required to keep a person alive. As a result recycling water offers a high return on investment. Recycling water can also increase mission safety by providing an emergency supply of drinking water. This paper evaluates the potential benefits of two wastewater treatment technologies that have been designed to reduce the mass of the CEV and LSAM missions. For a 3 day CEV mission to the International Space Station (ISS) this approach could reduce the mass required to provide drinking water by 65% when compared to stored water. For an 18 day Lunar mission a mass savings of 70% is possible.
1997-07-01
Technical Paper
972510
Michael Flynn, David Bubenheim, Erick Chiang, Peter Goldman, Lisa Kohout, Gary Norton
Renewable energy sources and their integration with other power sources to support remote communities is of interest for Mars applications as well as Earth communities. The NSF, NASA, and DOE have been jointly supporting development of a 100 kW cold weather wind turbine through grants and SBIR's independently managed by each agency but coordinated by NASA. The NSF grant is specific to address issues associated with the South Pole Application and a 3 kW direct drive unit is currently being tested there in support of the development of the 100 kW unit. An NREL contract is focused on development of the 100 kW direct drive generator. The NASA SBIR is focused on development of the 100 kW direct drive wind turbine.
1997-07-01
Technical Paper
972356
Michael Flynn, Bruce Borchers
The future of manned space exploration will be determined through a process which balances the innate need of humanity to explore its surroundings and the costs associated with accomplishing these goals. For NASA this balance is derived from economics and budgetary constraints that hold it accountable for the expenditure of public funds. These budgetary realities demand a reduction in cost and expenditures of exploration and research activities. For missions venturing out to the edge of habitability, the development of cost effective life support approaches will have a significant influence on mission viability. Over the past several years a variety of mission scenarios for Lunar and Mars missions have been developed. The most promising of these attempt to provide basic mission requirements at a minimum cost. As a result these missions are extremely power limited.
2001-07-09
Technical Paper
2001-01-2348
Eric Litwiller, Martin Reinhard, Michael Flynn, John Fisher
An energy-efficient lyophilization technique is being developed to recover water from highly contaminated spacecraft waste streams. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain water. To operate in microgravity, and to minimize power consumption, thermoelectric heat pumps can be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer is described and used to generate energy use and processing rate estimates.
2000-07-10
Technical Paper
2000-01-2287
Michael Flynn, Bruce Borchers
This paper provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This paper provides a description of the VPCAR technology and a summary of the current performance of the technology.
1999-07-12
Technical Paper
1999-01-2207
Michael Flynn, Linda Powers, Barry Pyle
One of the key questions addressed in the field of Astrobiology is based upon the assumption that life exists, or at one time existed, in locations throughout the universe. However, this assumption is just that, an assumption. No definitive proof exists. On Earth, life has been found to exist in many diverse environments. We believe that this tendency towards diversity supports the assumption that life could exist wherever environmental conditions are right to support it. There are several locations within our Solar System which might support environments which are conducive to life. However, to conclusively establish the existence of life in such locations we must be capable of sensing generic life forms. This paper provides a summary of several innovative techniques based on the use of fluorescent analysis for the direct detection of extraterrestrial life forms.
2003-07-07
Technical Paper
2003-01-2529
Richard Boulanger, Charles Blackwell, Bruce Borchers, Michael Flynn, David Smernoff
The Rotating Disk Analytical System (R-DAS) is an in-situ, bio-analytical technology, which utilizes a micro-fluidic disk with similar form factor as an audio compact disc to enhance and augment microgravity-based cellular and molecular biology research. The current micro-fluidic assay performs live cell/dead cell analysis using fluorescent microscopy. Image acquisition and analysis are performed for each of the selected microscope slide windows. All images are stored for later download and possible further post analysis. The flight version of the R-DAS will occupy a double mid-deck shuttle locker or one quarter of an ISS rack. The control system for the R-DAS consists of a set of interactive software components. These components interact with one another to control disk rotation, vertical and horizontal stage motion, sample incubation, image acquisition and analysis, and human interface.
2008-06-29
Technical Paper
2008-01-2145
Michael Flynn, Jesse Fusco, Mark Kliss, Sherwin Gormly, Tra-My Justine Richardson, Ami Hannon, Kevin Howard, Tzahi Y. Cath, V. Dean Adams, Amy E. Childress
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
2007-07-09
Technical Paper
2007-01-3036
Kristin Tomes, David Long, Layne Carter, Michael Flynn
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
2007-07-09
Technical Paper
2007-01-3035
Michael Flynn, Sherwin Gormly, Tzahi Y. Cath, V. Dean Adams, Amy E. Childress
Direct osmotic concentration (DOC) is a membrane treatment process for reclamation of space craft wastewater. It incorporates a novel system architecture that includes a forward osmosis (FO) and reverse osmosis (RO) subsystem for hygiene (gray) water, and a membrane distillation subsystem for the treatment of urine and humidity condensate. The products of these subsystems are combined and then post-treated by a catalytic oxidation subsystem. This paper documents progress made during the second year of a three year Rapid Technology Development Team (RTDT) effort.
2007-07-09
Technical Paper
2007-01-3037
Sherwin Gormly, Michael Flynn
The Lightweight Contingency (LWC) Urine System is a contingency urine recovery system that produces a liquid food product. It does this on an individual (personal) basis thus removing the concerns associated with shared urine recycle. The system uses activated carbon treatment followed by forward osmosis (FO) to provide a hydration and electrolyte fluid (a sports drink) for crew consumption. The system hardware consists of an initial urine collection device containing an activated carbon matrix. This is followed by transfer of the treated urine into an FO membrane treatment cell. The FO treatment cell consists of a 2 L plastic bag. This FO bag is a robustly constructed intravenous (IV) surgical fluid drip bag equipped with input and output ports and an internally mounted cellulose triacetate membrane. All components are light weight disposable plastic, the system is potentially wearable, and it uses no electrical power.
2007-07-09
Technical Paper
2007-01-3039
Nancy Rabel Hall, Charles Niederhaus, Jeffrey Mackey, Eric Litwiller, Michael Flynn
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions [1,2,3,4,5]. Reduced gravity testing of the VPCAR System has been initiated to identify any potential problems with microgravity operation. Two microgravity testing campaigns have been conducted on NASA's C-9B Reduced Gravity Aircraft. These tests focused on the fluid dynamics of the unit's Wiped-Film Rotating Disk (WFRD) evaporator. The experiments used a simplified system to study the process of forming a thin film on a rotating disk. The configuration simulates the application of feed in the VPCAR's WFRD evaporator. The first round of aircraft testing, which was completed in early 2006, indicated that a problem with microgravity operation of the WFRD existed. It was shown that in reduced gravity the VPCAR wiper did not produce a uniform thin film [6]. The film was thicker near the axis of rotation where centrifugal forces are small.
1997-07-01
Technical Paper
972272
Kanapathipillai Wignarajah, Suresh Pisharody, John Fisher, Michael Flynn
Terraforming of Mars is the long-term goal of colonization of Mars. However, this process is likely to be a very slow process and conservative estimates involving a synergetic, technocentric approach suggest that it may take around 10,000 years before the planet can be parallel to that of Earth and where humans can live in open systems (Fogg, 1995). Hence, for the foreseeable future, any missions will require habitation within small confined habitats with high biomass to atmospheric mass ratios, thereby requiring that all wastes be recycled. Processing of the wastes will ensure predictability and reliability of the ecosystem and reduce resupply logistics. Solid wastes, though smaller in volume and mass than the liquid wastes, contain more than 90% of the essential elements required by humans and plants.
2000-07-10
Technical Paper
2000-01-2342
Michael Flynn, John Hines, Chris McKay
The study of life in extreme environments provides an important basis from which we can undertake the search for extraterrestrial life. This paper provides a description of a program focused on developing technologies which are necessary to evaluate the potential for the existence of a deep sub-seafloor biosphere.
2006-07-17
Technical Paper
2006-01-2130
Henry Nahra, Thomas Kraft, Glenda Yee, Amy Jankovsky, Michael Flynn
This paper describes the results of ground testing of a scroll pump with a potential of being a substitute for the current vacuum pump of the Vapor Phase Catalytic Ammonia Reduction (VPCAR). Assessments of the pressure-time, pump-down time, pump power and the pump noise were made for three configurations of the pump the first of which was without the gas ballast, the second with the gas ballast installed but not operating and the third with the gas ballast operating. The tested scroll pump exhibited optimum characteristics given its mass and power requirements. The pump down time required to reach a pressure of 50 Torr ranged from 60 minutes without the ballast to about 120 minutes with the gas ballast operational. The noise emission and the pump power were assessed in this paper as well.
Viewing 1 to 30 of 34

Filter

  • Aerospace
    34
  • Range:
    to:
  • Year: