Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Journal Article

An Investigation into the Tradespace of Advanced Wide-Band Gap Semiconductor Devices in a Full-Bridge DC-DC Converter

2016-09-20
2016-01-1990
In aerospace applications, it is important to have efficient, small, affordable, and reliable power conversion units with high power density to supply a wide range of loads. Use of wide-band gap devices, such as Silicon Carbide (SiC) and Gallium Nitride (GaN) devices, in power electronic converters is expected to reduce the device losses and need for extensive thermal management systems in power converters, as well as facilitate high-frequency operation, thereby reducing the passive component sizes and increasing the power density. A performance comparison of state-of-the art power devices in a 10 kW full-bridge dc-dc buck converter operating in continuous conduction mode (CCM) and at switching frequencies above 100 kHz will be presented in this manuscript. Power devices under consideration are silicon (Si) IGBT with Si antiparallel diodes, Si IGBT with SiC antiparallel diodes, Si MOSFETs, SiC MOSFETs, and enhancement-mode GaN transistors.
Journal Article

A First Principles Based Approach for Dynamic Modeling of Turbomachinery

2016-09-20
2016-01-1995
As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
Journal Article

A Methodology for Collision Prediction and Alert Generation in Airport Environment

2016-09-20
2016-01-1976
Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
Journal Article

Powder Reuse and Its Effects on Laser Based Powder Fusion Additive Manufactured Alloy 718

2016-09-20
2016-01-2071
Laser Based Powder Bed Fusion, a specific application of additive manufacturing, has shown promise to replace traditionally fabricated components, including castings and wrought products (and multiple-piece assemblies thereof). In this process, powder is applied, layer by layer, to a build plate, and each layer is fused by a laser to the layers below. Depending on the component, it appears that only 3-5% of the powder charged into the powder bed fusion machine is fused. Honeywell’s initial part qualification efforts have prohibited the reuse of powder. Any unfused powder that exits the dispenser (i.e., surrounds the build or is captured in the overflow) is considered used. In order for the process to be broadly applicable in an economical manner, a methodology should be developed to render the balance of the powder (up to 97% of the initial charge weight) as re-usable.
Journal Article

A Specification Analysis Framework for Aircraft Systems

2016-09-20
2016-01-2023
Future aircraft systems are projected to have order of magnitude greater power and thermal demands, along with tighter constraints on the performance of the power and thermal management subsystems. This trend has led to the need for a fully integrated design process where power and thermal systems, and their interactions, are considered simultaneously. To support this new design paradigm, a general framework for codifying and checking specifications and requirements is presented. This framework is domain independent and can be used to translate requirement language into a structured definition that can be quickly queried and applied to simulation and measurement data. It is constructed by generalizing a previously developed power quality analysis framework. The application of this framework is demonstrated through the translation of thermal specifications for airborne electrical equipment, into the SPecification And Requirement Evaluation (SPARE) Tool.
Journal Article

Hybrid Technique for Real-Time Simulation of High-Frequency-Switched Electrical Systems

2016-09-20
2016-01-2028
Experimental Hardware-in-the-loop (xHIL) testing utilizing signal and/or power emulation imposes a hard real-time requirement on models of emulated subsystems, directly limiting their fidelity to what can be achieved in real-time on the available computational resources. Most real-time simulators are CPU-based, for which the overhead of an instruction-set architecture imposes a lower limit on the simulation step size, resulting in limited model bandwidth. For power-electronic systems with high-frequency switching, this limit often necessitates using average-value models, significantly reducing fidelity, in order to meet the real-time requirement. An alternative approach emerging recently is to use FPGAs as the computational platform, which, although offering orders-of-magnitudes faster execution due to their parallel architecture, they are more difficult to program and their limited fabric space bounds the size of models that can be simulated.
Journal Article

Utilizing Behavioral Models in Experimental Hardware-in-the-Loop

2016-09-20
2016-01-2042
This paper introduces a method for conducting experimental hardware-in-the-loop (xHIL), in which behavioral-level models are coupled with an advanced power emulator (APE) to emulate an electrical load on a power generation system. The emulator is commanded by behavioral-level models running on an advanced real-time simulator that has the capability to leverage Central Processing Units (CPUs) and field programmable gate arrays (FPGA) to meet strict real-time execution requirements. The paper will be broken down into four topics: 1) the development of a solution to target behavioral-level models to an advanced, real-time simulation device, 2) the development of a high-bandwidth, high-power emulation capability, 3) the integration of the real-time simulation device and the APE, and 4) the application of the emulation system (simulator and emulator) in an xHIL experiment.
Journal Article

Power Quality Assessment through Stochastic Equivalent Circuit Analysis

2016-09-20
2016-01-1988
Movement toward more-electric architectures in military and commercial airborne systems has led to electrical power systems (EPSs) with complex power flow dynamics and advanced technologies specifically designed to improve power quality in the system. As such, there is a need for tools that can quickly analyze the impact of technology insertion on the system-level dynamic transient and spectral power quality and assess tradeoffs between impact on power quality versus weight and volume. Traditionally, this type of system level analysis is performed through computationally intensive time-domain simulations involving high fidelity models or left until the hardware fabrication and integration stage. In order to provide a more rapid analysis prior to hardware development and integration, stochastic equivalent circuit analysis is developed that can provide power quality assessment directly in the frequency domain.
Journal Article

Communication Infrastructure for Hybrid Test Systems - Demands, Options, and Current Discussions

2016-09-20
2016-01-2051
The application of a communication infrastructure for hybrid test systems is currently a topic in the aerospace industry, as also in other industries. One main reason is flexibility. Future laboratory tests means (LTMs) need to be easier to exchange and reuse than they are today. They may originate from different suppliers and parts of them may need to fulfill special requirements and thus be based on dedicated technologies. The desired exchangeability needs to be achieved although suppliers employ different technologies with regard to specific needs. To achieve interoperability, a standardized transport mechanism between test systems is required. Designing such a mechanism poses a challenge as there are several different types of data that have to be exchanged. Simulation data is a prominent example. It has to be handled differently than control data, for example. No one technique or technology fits perfectly for all types of data.
Technical Paper

Hover Testing of a Large Multi-Element Arc Wing VTOL Research Model

2016-09-20
2016-01-1979
Technology to create a VTOL for general aviation that is fast, efficient, easy to fly, and affordable, has proven elusive. Bertelsen Design LLC has built a large research model to investigate the potential of the arc wing VTOL to fulfill these attributes. The aircraft that is the subject of this paper weighs approximately 145 kg (320 lbs) and features coaxial, dual-rotating propellers, diameter 1.91 m (75 inches). Power is from an MZ 202 two-cycle, two-cylinder engine. Wingspan is 1.82 m (72 inches). The arc wing differentiates this aircraft from previous deflected-slipstream prototypes, which suffered from pitch-trim issues during transition. This paper will present configuration details of the Bertelsen model, showing how it is possible to generate high lift from a short-span wing system. The Bertelsen model can hover out of ground effect using just two arc-wing elements: a main wing and a “slat”.
Technical Paper

A 3D Head Up Display with Simulated Collimation

2016-09-20
2016-01-1978
A 3D Stereoscopic Head-Up Display (HUD) using direct projection on a transparent screen is presented. Symbol incrustation in conformity with the landscape is performed through the use of simulated collimation offering a large eye-box, in excess of conventional HUD. The use of spectral glasses for our transparent screen was decided as most commonly used polarizing or active glasses were not adapted. Furthermore it gave ususeful green laser attack protection.
Technical Paper

Flight and Range Characteristics for a Subsonic Advanced Propeller-Driven Blended Wing Body Composite Air Frame Capable of Transporting a 150-Ton Military Cargo

2016-09-20
2016-01-2019
An advanced composite Blended Wing Body (BWB) air frame previously used as a study aircraft to transport a 75-ton military cargo halfway around the world and back unrefueled has been modified and evaluated as a 150-ton heavy lifter. The modifications include enlarging the forward trim canard, reducing fuel load by 151,850 lbs, increasing the high-mach NASA-type counter-rotating propellers from 12 feet to 13 feet diameter, extending the propeller support pylons' height by 6 inches and modifying cruise flight and prop control strategies. Due to structural and propulsion system changes, the air frame Operational Empty Weight (OEW) was increased by 1,850 lbs. but the maximum Take Off Gross Weight (TOGW) was held to 800,000 lbs. Brief descriptions of the major propulsion system components are provided. In addition, a comparison of three different counter-rotating propeller systems is presented. The first is a Standard configuration.
Technical Paper

An Integrated System’s Approach Towards Aero Engine Subsystems Design

2016-09-20
2016-01-2020
This paper proposes an integrated system’s approach towards design of aero-engine subsystems - seals, bearing chamber, generator and power system. In a conventional design approach, the design of the overall system is typically broken-down into subsystems. Therefore, the focus is not on the mutual interaction between different components or subsystems, resulting in a lack of characterization of the overall system performance at the design phase. A systems design approach adopts a much broader outlook, focusing on the overall optimization of the system performance. This paper is divided into two parts. The first part presents an integrated approach for modelling the electrical, mechanical and hydraulic subsystems of aero engines, in order to analyze the fluid dynamics interactions and reduce the transversal shaft vibrations. For this, an in-line starter/generator and an air-riding seal are studied.
Technical Paper

Aircraft Weight and Center of Mass Estimation System

2016-09-20
2016-01-2025
Aircraft weight and center of mass are two critical design and operational parameters that have to be within a design envelope to ensure a safe and efficient operation of aircraft. Previous efforts to accurately determine aircraft weight and center of mass before takeoff using landing gear shock strut pressures have failed due to the distortion of measured pressures by shock strut seal friction. Currently, aircraft loading process is controlled with loading sheets and passenger/cargo weight estimation as there are no online measurement systems that can accurately and efficiently estimate aircraft weight and determine the center of mass location before takeoff. However, errors in loading sheets, shifting cargo and errors in weight estimation could lead to incorrect loading of aircraft and, consequently, increase the risk of accidents, particularly in cargo flights.
Technical Paper

Power Density of Multi-Purpose Motor Controllers - Challenge Beyond Switches

2016-09-20
2016-01-2012
There are many identical large solid-state switching Multi-Purpose Motor Controllers on board of one of the More Electric Aircrafts (MEA). The controllers drive over twice as many different machines with wide torque and speed ranges. The common motor controllers are installed in a central location. The machines are located at diverse and distant positions. Power is delivered and routed from the controllers to machines via a large network comprising of unshielded feeders and multiplexing units. The controllers are required to produce sine wave voltage output to machines, and draw clean power from the source to meet Power Quality (PQ) and Electromagnetic Interference (EMI) requirements. There are significant aircraft level weight savings with that concept. However, designing such a clean motor controller was a major power density challenge beyond switches, accounting for high torque main propulsion engine start and high speed Cabin Air Compressors.
Technical Paper

Energy Storage for Commercial Hybrid Electric Aircraft

2016-09-20
2016-01-2014
Energy storage options for a hybrid electric commercial single aisle aircraft were investigated. The propulsion system features twin Geared Turbofan™ engines in which each low speed spool is assisted by a 2,500 HP electric motor during takeoff and climb. During cruise, the aircraft is powered solely by the turbine engines which are sized for efficient operation during this mission phase. A survey of state of the art energy storage options was conducted. Battery, super-capacitor, and flywheel metrics were collected from the literature including Specific Energy (Wh/kg), Volumetric Energy Density (Wh/L), Specific Power (W/kg), Cost ($/kWh), and Number of Cycles. Energy storage in fuels was also considered along with various converters sized to produce a targeted quantity of electric power. The fuel and converters include fuel cells (both proton exchange membrane and solid oxide operating on hydrogen or on jet fuel) and a turbogenerator (jet fuel or LNG).
Technical Paper

Analysis Tool for Initial High Level Assessment of Candidate MEA Architectures

2016-09-20
2016-01-2015
Mass and efficiency are key performance indicators for the development and design of future electric power systems (EPS) for more-electric aircraft (MEA). However, to enable consideration of high-level EPS architecture design trades, there is a requirement for modelling and simulation based analysis to support this activity. The predominant focus to date has been towards the more detailed aspects of analysis, however there is also a significant requirement to be able to perform rapid high-level trades of candidate architectures and technologies. Such a capability facilitates a better appreciation of the conflicting desires to maximize availability and efficiency in candidate MEA architectures, whilst minimizing the overall system mass. It also provides a highly valuable and quantitative assessment of the systemic impact of new enabling technologies being considered for MEA applications.
Technical Paper

Rapid Reconfiguration of Engines for Dynamics Simulation

2016-09-20
2016-01-2017
In modern complex engine design, it is a common challenge to keep simulation in step with changes to component geometry, environmental conditions, and mission data - and this applies to both actual designs and those that belong to the hypothetical design space as explored in design of experiments (DOE). In this paper, an effective simulation process and data management (SPDM) approach is presented that hinges on a focus on components, their generalized connections and programmatic templating. This simulation approach improves the fidelity of engine analysis, engineering productivity, quality, scalability across the gas turbine engine organization, and HPC utilization. In addition to this new analysis machinery, gas turbine engine modeling fidelity is elevated by surpassing commonly used one-dimensional (1D) models of rotors.
Technical Paper

Formal Characterization and Optimization of Algorithm for the Modelling of Strongly Nonlinear Dependencies Using the Method "Cut-Glue" Approximation of Experimental Data

2016-09-20
2016-01-2033
Mathematical modeling of technical objects is most frequently connected with mathematical processing of experimental data. The obtained pointlike dependencies of output variables on input ones are often strongly nonlinear, piecewise, and sometimes discontinuous. Approximation of these dependencies using polynomial resolution and spline-functions is problematic and may cause low accuracy. A radically new solution to this problem was suggested in a number of previous works. The method is based on partitioning of experimental dependencies into patches, approximation of each patch by analytic functions, multiplicative cutting of fragments from each function along the patch border and additive gluing of the fragments into a single function -- namely the model of approximated dependence. The analytic properties of this approximating glued function appear to be the major distinguishing feature and advantage of the method.
X