Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Spotlight on Design Insight: Fuel Efficiency: Fuel Economy Testing

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. As global concerns about the negative consequences of greenhouse gases on the environment increase, regulatory agencies around the world are taking serious steps to address the issue of tailpipe emissions In the episode “Fuel Efficiency: Fuel Economy Testing” (12:05), engineers at the EPA’s National Vehicle and Fuel Emissions Laboratory demonstrate how different vehicles are tested for emissions, and AVL’s technical team shows how accurate tailpipe emissions can be measured and reported.
Standard

Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground

2014-08-05
HISTORICAL
ARP5149BDA
This document establishes the minimum criteria for effective training of air carrier and contractor personnel to deice/anti-ice aircraft to ensure the safe operation of aircraft during ground icing conditions. Appendix D specifies guidelines for particular airplane models.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Journal Article

Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine

2010-10-25
2010-01-2254
An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 μm. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Journal Article

High Shear Rate Rheology of Lower Viscosity Engine Oils Over a Temperature Range of 80° to 150°C Using the Tapered Bearing Simulator (TBS) Viscometer

2010-10-25
2010-01-2288
In 2005, the growing emphasis on fuel efficiency coupled with the long-recognized negative effects of viscous friction caused by engine hydrodynamic lubrication, led to considerations of the benefits of lower viscosity engine oils by the SAE Engine Oil Viscosity Classification (EOVC) Task Force. More recently these considerations were given further impetus by OEM enquiry regarding modification of the SAE Viscosity Classification System to include oils of lower viscosity specification than that of SAE 20. For the EOVC Task Force, such considerations of commercially available, significantly lower viscosity engine oils, also produced a need to reassess the precision of high shear rate viscometry of such engine oils as presently practiced at 150°C - as well as interest in temperatures such as 100° and 120°C believed more representative of engine operating conditions.
Journal Article

Conversion of a Spark-Ignited Aircraft Engine to JP-8 Heavy Fuel for Use in Unmanned Aerial Vehicles

2011-04-12
2011-01-0145
In order to satisfy a single-fuel mandate, the U.S. Department of Defense has a need for engines in the 20 to 50 hp range to power midsized Unmanned Aerial Vehicles (UAVs) and the ability to operate on JP-8 also known as “heavy” fuel. It is possible to convert two-stroke aircraft engines designed to operate on a gasoline-oil mixture to run on JP-8/oil using the Sonex Combustion System (SCS) developed by Sonex Research, Inc. Conversion of the engine involves replacing the cylinder heads with new components designed to accept a steel combustion ring insert. Also required are glow-plugs to preheat the cylinder head prior to engine start. The converted engine produces the same power output as the stock engine operating on gasoline. Conversion of both a 20 hp and 40 hp engine was successfully achieved using the SCS.
Journal Article

Emission Measurements of the AI-14RA Aviation Engine in stationary test and under Real Operating Conditions of PZL-104 ‘Wilga’ Plane

2010-05-05
2010-01-1563
Due to a rapid development of air transportation there is a need for the assessment of real environmental risk related to the aircraft operation. The emission of carbon monoxide and particulate matter is still a serious threat~constituting an obstacle in the development of combustion engines. The applicable regulations related to the influence of the air transportation on the environment introduced by EPA (Environmental Protection Agency), ICAO (International Civil Aviation Organization) contained in JAR 34 (JAA, Joint Aviation Requirements, JAR 34, Aircraft Engine Emissions), FAR 34 (FAA, Federal Aviation Regulations, Part 34, Fuel Venting and Exhaust Emission Requirements for Turbine Engine Powered Airplanes), mostly pertain to the emission of noise and exhaust gas compounds, NOx in particular. They refer to jet engines and have stationary test procedures depending on the engine operating conditions.
Journal Article

Innovative Processing Technology of Chromium Carbide Coating to Apprise Performance of Piston Rings

2013-04-09
2012-01-2327
A chemical vapor deposition method for preparing high-quality chromium carbide coatings was developed. The resulting coatings exhibit high adhesion and increase wear resistance of the cylinder piston group components as compared to common coatings prepared by electrolytic chromium plating. The operation performance of the coatings was tested using scrapper piston of the Raba-Man diesel engine of Ikarus bus and compression and oil scrapper rings of the diesel engine 10D100. It was found that chromium coatings prepared by the method proposed are characterized by relatively low coefficient of friction and high corrosion resistance.
Journal Article

Hybrid-Electric, Heavy-Fuel Propulsion System for Small Unmanned Aircraft

2014-09-16
2014-01-2222
A series hybrid-electric propulsion system has been designed for small rapid-response unmanned aircraft systems (UAS) with the goals of improving endurance, providing flexible and responsive electric propulsion, and enabling heavy fuel usage. The series hybrid architecture used a motor-driven propeller powered by a battery bank, which was recharged by an engine-driven generator, similar to other range-extended electric vehicles. The engine design focused on a custom, two-stroke, lean-burn, compression-ignition (CI), heavy-fuel engine, which was coupled with an integrated starter alternator (ISA) to provide electrical power. The heavy-fuel CI engine was designed for high power density, improved fuel efficiency, and compatibility with heavy fuels (e.g., diesel, JP-5, JP-8). Commercially available gasoline spark-ignition engines and heavy-fuel spark-ignition engines were also considered in the trade study.
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Journal Article

Aircraft Radial Engine CFD Cooling Model

2014-10-13
2014-01-2884
The article presents convective heat transfer phenomenon by analytically and empirically taken data and CFD based model analysis. 1000 hp ASz-62IR aircraft radial engine is the object of research. This engine is being continuously operated on M18 Dromader and AN-2 aircraft. To recount heat oriented phenomena a three-dimensional CFD model was developed that accounts circumfluent flow around cylinder and cylinder head engine surfaces. The geometry includes M18 Dromader frontal airframe elements to account their influence on cooling air flow. The simulation has been conducted as a steady-state flow. Geometry and setup specific swirls and backflows were observed that increase cylinder and cylinder head rear side heat transfer coefficients. Flow along cooling fins was analysed, connecting their heat transfer coefficient dependency. Results show that local air velocity has big influence on heat flux passed by fin walls.
Technical Paper

Real Time Vehicle Dynamics for Smart Driving

2021-09-22
2021-26-0085
In last few years there has been great research to increase safety of on-road vehicles by providing information of various vehicle parameters to the user/driver while driving on road. Many algorithms have been developed to assess the vehicle run time situations and enable vehicle ECU to take decisions for autonomous driving. These algorithms are derived using data captured from sensors predominantly make use of vehicle dynamic information. The design proposed in this paper discusses capturing of two important and critical vehicle run time parameters i.) Vehicle tire pressure and the ii.) Road gradient. These parameters then help us in determining the effective fuel efficiency of the vehicle and approximate distance that user can drive with the amount of fuel remaining in the tank.
X