Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Spotlight on Design Insight: Fuel Efficiency: Fuel Economy Testing

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. As global concerns about the negative consequences of greenhouse gases on the environment increase, regulatory agencies around the world are taking serious steps to address the issue of tailpipe emissions In the episode “Fuel Efficiency: Fuel Economy Testing” (12:05), engineers at the EPA’s National Vehicle and Fuel Emissions Laboratory demonstrate how different vehicles are tested for emissions, and AVL’s technical team shows how accurate tailpipe emissions can be measured and reported.
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
Journal Article

Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2129
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

2010-10-25
2010-01-2212
The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Journal Article

High Shear Rate Rheology of Lower Viscosity Engine Oils Over a Temperature Range of 80° to 150°C Using the Tapered Bearing Simulator (TBS) Viscometer

2010-10-25
2010-01-2288
In 2005, the growing emphasis on fuel efficiency coupled with the long-recognized negative effects of viscous friction caused by engine hydrodynamic lubrication, led to considerations of the benefits of lower viscosity engine oils by the SAE Engine Oil Viscosity Classification (EOVC) Task Force. More recently these considerations were given further impetus by OEM enquiry regarding modification of the SAE Viscosity Classification System to include oils of lower viscosity specification than that of SAE 20. For the EOVC Task Force, such considerations of commercially available, significantly lower viscosity engine oils, also produced a need to reassess the precision of high shear rate viscometry of such engine oils as presently practiced at 150°C - as well as interest in temperatures such as 100° and 120°C believed more representative of engine operating conditions.
Journal Article

Hybrid-Electric, Heavy-Fuel Propulsion System for Small Unmanned Aircraft

2014-09-16
2014-01-2222
A series hybrid-electric propulsion system has been designed for small rapid-response unmanned aircraft systems (UAS) with the goals of improving endurance, providing flexible and responsive electric propulsion, and enabling heavy fuel usage. The series hybrid architecture used a motor-driven propeller powered by a battery bank, which was recharged by an engine-driven generator, similar to other range-extended electric vehicles. The engine design focused on a custom, two-stroke, lean-burn, compression-ignition (CI), heavy-fuel engine, which was coupled with an integrated starter alternator (ISA) to provide electrical power. The heavy-fuel CI engine was designed for high power density, improved fuel efficiency, and compatibility with heavy fuels (e.g., diesel, JP-5, JP-8). Commercially available gasoline spark-ignition engines and heavy-fuel spark-ignition engines were also considered in the trade study.
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Technical Paper

Real Time Vehicle Dynamics for Smart Driving

2021-09-22
2021-26-0085
In last few years there has been great research to increase safety of on-road vehicles by providing information of various vehicle parameters to the user/driver while driving on road. Many algorithms have been developed to assess the vehicle run time situations and enable vehicle ECU to take decisions for autonomous driving. These algorithms are derived using data captured from sensors predominantly make use of vehicle dynamic information. The design proposed in this paper discusses capturing of two important and critical vehicle run time parameters i.) Vehicle tire pressure and the ii.) Road gradient. These parameters then help us in determining the effective fuel efficiency of the vehicle and approximate distance that user can drive with the amount of fuel remaining in the tank.
Standard

Liquid Propellant Gas Generation Systems

2013-06-17
CURRENT
AIR1343B
This information report presents a preliminary discussion of liquid propellant gas generation (LPGG) systems. A LPGG system, as used herein, is defined as a system which stores a liquid propellant and, on command, discharges and converts the liquid propellant to a gas. The LPGG system can interface with a gas-to-mechanical energy conversion device to make up an auxiliary power system. Figure 1 shows a block diagram of LPGG system components which include a propellant tank, propellant expulsion system, propellant control and a decomposition (or combustion) chamber. The purpose of this report is to provide general information on the variety of components and system arrangements which can be considered in LPGG design, summarize advantages and disadvantages of various approaches and provide basic sizing methods suitable for initial tradeoff purposes.
Standard

Liquid Propellant Gas Generation Systems

2007-11-06
HISTORICAL
AIR1343A
This information report presents a preliminary discussion of liquid propellant gas generation (LPGG) systems. A LPGG system, as used herein, is defined as a system which stores a liquid propellant and, on command, discharges and converts the liquid propellant to a gas. The LPGG system can interface with a gas-to-mechanical energy conversion device to make up an auxiliary power system. Figure 1 shows a block diagram of LPGG system components which include a propellant tank, propellant expulsion system, propellant control and a decomposition (or combustion) chamber. The purpose of this report is to provide general information on the variety of components and system arrangements which can be considered in LPGG design, summarize advantages and disadvantages of various approaches and provide basic sizing methods suitable for initial tradeoff purposes.
Standard

AIRCRAFT DEICING VEHICLE SELF-PROPELLED, SMALL CAPACITY

1987-03-01
HISTORICAL
ARP4047
This aerospace recommended practice covers requirements for a self-propelled, boom type aerial device, equipped with an aircraft deicing fluid spraying system. The unit shall be highly maneuverable for deicing all exterior surfaces of intermediate size aircraft, e.g. DC-9, B-727 and B-737. The vehicle will also be used for aircraft maintenance and inspection. The vehicle shall be suitable for day and night operations.
Standard

Glossary, Aircraft Engine Starting and Auxiliary Power Systems

2001-04-01
CURRENT
ARP906B
The Aircraft Engine Starting and Auxiliary Power System Glossary presents definitions of terms commonly encountered and associated with aircraft engine starting and auxiliary power systems. Terms have been arranged alphabetically.
Standard

Helicopter Fuel Economy Evaluation

2022-02-23
WIP
AS1516A
The purpose of this standard is to provide a method of evaluating helicopter fuel economy which accounts for the significant technical variables in helicopter and powerplant design.
Standard

Helicopter FUEL Economy Evaluation

1998-02-01
CURRENT
AS1516
The purpose of this standard is to provide a method of evaluating helicopter fuel economy which accounts for the significant technical variables in helicopter and powerplant design.
X