Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Career Wise for Engineering Professionals: Transforming Your Talents into the New World of Work

2013-08-19
There are many macro drivers that are creating opportunities for transportation electrification. They include the environment, dependence on foreign oil, national security, battery technology and government incentives to name a few. In light of this growing momentum consumers will have choices to where they can charge ? at home, workplace or publicly. Electrical vehicle supply equipment will drive value throughout the supply chain ? installer, building owner, automaker, suppliers, utilities and consumers. Market acceptance will occur when consumer?s needs and wants are met. To meet these needs access to products through multiple channels will be required. Presenter Manoj Karwa, Leviton Manufacturing Co. Inc.
Video

Ice Phobic Coatings for Control and Covered Surfaces

2012-03-14
Silicones have been utilized in multiple industries in the last 50 years and their applications are still expanding as technology grows. Ice phobic coatings, as an example, have been utilized on lock walls, navigation channels, wind turbines, hydropower intakes, and aircraft. Without protection these applications have a high risk of failure in the functions they perform. For example, ice build up on an aircraft?s aerodynamic surfaces increases drag which reduces lift during flight operations. Utilizing a silicone ice phobic coating significantly reduces the adhesion of ice to aerodynamic surfaces. Compared to other polymeric materials, silicones are known for their broad operating temperature range and lend themselves to excellent performance in a variety of harsh environments. Especially in low temperatures where ice adhesion is a concern, silicones retain their elastomeric physical properties and low modulus.
Video

Spotlight on Design Insight: Sensors: Fluid Measurements and Avionics

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. The quality of fluids used in aviation, such as oil or fuel, is an extremely important safety issue. One way to reliably monitor fluids is through the use of special measurement sensors. In the episode “Fluid Measurements and Avionics” (9:13), an engineer at Meggitt demonstrates the capabilities of time-domain reflectometry sensors, explaining how they are assembled and used. The business case for monitoring oil and fuel degradation, and how to proactively take advantage of preventative maintenance is also explained.
Video

Fiber Optic Strain Sensor Standardization - International and European Activities

2012-03-16
With the increased demand for high volume, cost-effective, fiber-reinforced thermoplastic parts, the lack of high throughput systems has become more pronounced. Thermoforming as a method to generate complex shapes from a flat preform is dependable and fast. In order to use readily available, standard unidirectional impregnated thermoplastic tape in this process, a flat perform must be created prior to the thermoforming step. Formerly, creating the preform by hand layup was a time consuming and therefore costly, step. Fiberforge�?s patented RELAY� technology overcomes the challenges of handling thermoplastic prepreg tape and provides a solution through the automated creation of a flat preform, referred to as a Tailored Blank?. Producing a part for thermoforming with accurate ply orientation and scrap minimization is now as simple as loading a material spool followed by a pressing a start button. Presenter Christina McClard, Fiberforge
Journal Article

Landing Response Analysis on High-Performance Aircraft* Using Estimated Touchdown States

2019-04-08
Abstract A novel use of state estimation methods as initial input for a landing response analysis is proposed in this work. Six degrees of freedom (DOF) non-linear landing response model is conceived by considering longitudinal dynamics of aircraft as a rigid body with heave-and-pitch motions coupled onto a bicycle landing gear † arrangement. The DOF for each landing gear consist of vertical and longitudinal motions of un-sprung mass, considering strut bending flexibility. The measurement data for state estimation is obtained for three landing cases using non-linear flight mechanics model interfaced with pilot-in-loop simulation. State estimation methods such as Upper Diagonal Adaptive Extended Kalman Filter (UD-AEKF) with fuzzy-based adaptive tuning and Un-scented Kalman Filter (UKF) were adapted for landing maneuver problem. On the basis of estimation error metrics, aircraft state from UKF is considered during onset of touchdown.
Journal Article

Parametric Studies on Airfoil-Boundary Layer Ingestion Propulsion System

2020-03-11
Abstract From the fact that a propulsor consumes less power for a given thrust if the inlet air is slower, simulations are conducted for a propulsor imposed behind an airfoil as ideal boundary layer ingestion (BLI) propulsor to stand on the benefits of this configuration from the point of view of power and efficiency and to get a closer look on the mutual interaction between them. This interaction is quantified by the impact on three main sets of parameters, namely, power consumption, boundary layer properties, and airfoil performance. The position and size of the propulsor have great influence on the flow around the airfoil. Parametric studies are carried out to understand their influence. BLI propulsor directly affects the power saving and all of the pressure-dependent parameters, including lift and drag. For the present case, power saving reached 14.4% compared to the propeller working in freestream.
Journal Article

Evaluation of Workload and Performance during Primary Flight Training with Motion Cueing Seat in an Advanced Aviation Training Device

2020-05-08
Abstract The use of simulation is a long-standing industry standard at every level of flight training. Historically, given the acquisition and maintenance costs associated with such equipment, full-motion devices have been reserved for advanced corporate and airline training programs. The Motion Cueing Seat (MCS) is a relatively inexpensive alternative to full-motion flight simulators and has the potential to enhance the fixed-base flight simulation in primary flight training. In this article, we discuss the results of an evaluation of the effect of motion cueing on pilot workload and performance during primary instrument training. Twenty flight students and instructors from a collegiate flight training program participated in the study. Each participant performed three runs of a basic circuit using a fixed-base Advanced Aviation Training Device (AATD) and an MCS.
Journal Article

Flight Performance Envelope for an Aircraft with a Fixed-Pitch Propeller

2021-07-14
Abstract A flight envelope for aircraft performance in the vertical plane illustrates the performance limitations on the aircraft, usually indicating the minimum and maximum airspeeds at a given altitude, the airspeeds for maximum rate of climb and maximum angle of climb at a given altitude, and the maximum altitude or absolute ceiling of the aircraft. This study outlines the procedure for constructing a vertical-plane flight performance aircraft for an aircraft with a fixed-pitch propeller, which involves additional complexities due to the variable propeller efficiency. The propeller performance, engine power, and drag polar models are described, as is the computational procedure. Envelopes for the flight performance in the vertical plane are presented for a particular remotely-piloted aircraft at different take-off weights.
Standard

Cost Versus Benefits of Engine Monitoring Systems

2005-10-28
HISTORICAL
AIR4176
The purpose of this SAE Aerospace Information Report (AIR) is to provide information that would be useful to potential users/operators and decision makers for evaluating and quantifying the benefits of an Engine Monitoring Systems (EMS) versus its cost of implementation. This document presents excerpts from reports developed to analyze “actual aircraft cost/benefits results”. These are presented as follows: a First, to outline the benefits and cost elements pertaining to EMS that may be used in performing a cost versus benefits analysis. b Second, to present considerations for use in conducting the analysis. c Third, to provide examples of analyses and results as they relate to the user/operator and decision-maker community. The document encompasses helicopters and fixed wing aircraft and distinguishes between civilian and military considerations.
Journal Article

Comparative Configurations for Lunar Lander Habitation Volumes: 2005-2008

2009-07-12
2009-01-2366
This paper presents an overview of the progression of the contemplated candidate volumes for the Lunar Lander since the beginning of the Vision for Space Exploration in 2004. These sets of data encompass the 2005 Exploration Systems Architecture Study (ESAS), the 2006 Request for Information on the Constellation Lunar Lander, the 2007 Lander Design Analysis Cycle −1 (LDAC-1) and the 2008 Lunar Lander Development Study (LLDS). This data derives from Northrop Grumman Corporation analyses and design research. A key focus of this investigation is how well the lunar lander supports crew productivity.
X