Criteria

Text:
Sector:
Topic:
Display:

Results

Viewing 1 to 30 of 5220
2004-07-19
Technical Paper
2004-01-2494
N. M. Samsonov, E. A. Kurmazenko, L. I. Gavrilov, N. S. Farafonov, N. V. Pavlova, T. N. Pavlova, V. Ju. Proshkin, S. Ju. Romanov, A. M. Rjabkin, A. S. Guzenberg, A. N. Slyshchenkov, O. V. Kirjushin
The Regenerative Atmosphere Revitalization and Monitoring system (ARMS), been part of Integrated Life Support System (ILSS), is intended for maintenance in the manned modules of a necessary chemical composition of an artificial gas atmosphere (AGA) on base of the crew metabolism product transform to environment initial components. Generally, the ARMS structure includes the individual systems and units intended for: → oxygen generation; → carbon dioxide removal and it concentration; → trace contaminants removal; → carbon dioxide reduction with the goal to produce an additional quantity of water necessary to increase the degree of the oxygen loop clousure. The ARMS structure of the International Space Station (ISS) Russian Segment (RS) includes the Electron-VM Oxygen Generation System (OGS), Vozdukh Carbon Dioxide Removal System (CDRS) and SBMP Trace Contaminants Removal Means (TCRM) installed in the Service Module.
2004-07-19
Technical Paper
2004-01-2488
Cynthia Pederson, Richard M. Lueptow
A promising technology for recycling wastewater on long term space missions is rotating reverse osmosis (RO). Rotating RO utilizes Taylor vortices, a flow structure in the annulus of the device, that provide increased transport of the water through the RO membrane compared to conventional RO systems. A high pressure rotating RO filter and fluid circuit have been designed and fabricated for use in long term tests. Preliminary results indicate that an increase in the operating pressure by a factor of three can improve the flux by a factor of four while maintaining high rejection of the contaminants.
2004-07-19
Technical Paper
2004-01-2489
N. M. Samsonov, L. S. Bobe, N. S. Farafonov, V. A. Soloukhin, S. Ju. Romanov, P. O. Andrejchuk, N. N., Protasov, Ju. E. Sinjak, V. M. Skuratov
The paper deals with the performance data of the service module Zvezda integrated water supply system of the International Space Station (ISS) as of March 31, 2004. The water supply and demand balance are analyzed. It is shown that water recovery from humidity condensate has been especially important when water delivery by Space Shuttles was terminated. The SRV-K contribution in potable water supply for crew needs was up to 76%. The data of humidity condensate and recovered water compositions are reviewed. The effective cooperation of the international partners on part of life support is shown. Water recovery future prospects are discussed.
2004-07-19
Technical Paper
2004-01-2486
Philippe A. Souvestre
Human performance deterioration in extreme conditions challenges the viability of critical scenarios during a space mission. Exposure to space flight environment, including microgravity appears to increase the stress on the sensory-motor controls regulatory system in the brain because it is calibrated to operate under gravity. Any pre-existing central dysfunction can allow an input overload which can cascade to and alter other related functions down the functional hierarchy, such as physical (fine postural control, coordination and dexterity, strength, reaction time, fatigue, space perception/orientation) cognitive(trajectory control, attention and vigilance, time awareness, decision making, concentration, and memory), and emotional (motivation, self-control, calmness/aggressiveness). This phenomenon has direct influence on an individual’s tendency for “error proneness”.
2004-07-19
Technical Paper
2004-01-2483
Vishal Nangalia, James Habershon
Humans are able to acclimatize and later adapt to extreme altitudes, and this will be shown to be beneficial to the human with respect to microgravity and spacecraft environment. Treating the astronaut as a subsystem, which can be enhanced and modified to ultimately benefit the whole spacecraft is an approach that is necessary to forge the next generation of human spaceflight. A spacecraft environment that is maintained at a pressure of 16 kPa (primarily oxygen) would be both well within the realm of possibility of an astronaut’s physiology and would provide significant benefits for the all the subsystems of a spacecraft from the large intra-stellar spaceship to the EVA suit.
2004-07-19
Technical Paper
2004-01-2484
Philippe A. Souvestre
Posture and gait controls underlie the fundamental physical and cognitive human factors necessary for astronauts’ safety and performance in Space. This central subsystem is adversely affected when exposed to an extreme or hostile environment. A specific stimulation, using dermal optical sensitivity, can be provided to the central nervous system to counteract peripheral stimulations due to microgravity as well as other negative stressors. We believe using dermal optical sensitivity-based stimulation can be key in the performance enhancement necessary to ensure human based space mission viability and success.
2004-07-19
Technical Paper
2004-01-2479
Larry Toups
The prudent use of analog facilities for future missions to other planetary bodies has been validated in many locations. Site specific analog projects such as the Haughton-Mars Project and Devon Island have proven beneficial by conducting terrestrial science type missions and learning from them. An integrated facility oriented to ground testing allows the opportunity to bring many other activities associated with a future exploration mission together and add value to the analog experience. The focus of such a facility as the Advanced Integration Matrix (AIM) at Johnson Space Center includes operations and various technical disciplines needed to conduct the mission. These facilities bring together emerging and developing technologies and identify the issues and risks when they are interfaced with each other. The purpose of this paper is to identify areas of near term benefit of ground test facilities focused on future missions in space.
2004-07-19
Technical Paper
2004-01-2478
Richard Boulanger, David Overland
Technologies that facilitate the design and control of complex, hybrid, and resource-constrained systems are examined. This paper focuses on design methodologies, and system architectures, not on specific control methods that may be applied to life support subsystems. It has been estimated that 60–80% of the effort in developing complex control systems is software development, and only 20–40% is control system development [1]. It has also been shown that large software projects have failure rates of as high as 50–65% [2,3]. Concepts discussed include the Unified Modeling Language (UML) and design patterns with the goal of creating a self-improving, self-documenting system design process. Successful architectures for control must not only facilitate hardware to software integration, but must also reconcile continuously changing software with much less frequently changing hardware [4]. These architectures rely on software modules or components to facilitate change.
2004-07-19
Technical Paper
2004-01-2476
Harry W. Jones, Robin L. Dillon-Merrill, Gretchen A. Thomas
The Advanced Integration Matrix (AIM) Project will investigate systems integration and test for the Vision for Space Exploration. The goal of AIM is to reduce the risk of future human missions by identifying those significant risks that Earth-based integration and test can reduce. AIM will focus on the mission requirements that need verification beyond component/subsystem testing, but that can still be tested on Earth. In order to help set priorities for AIM, this paper describes a preliminary Probabilistic Risk Analysis (PRA) framework that was developed based on the Vision for Space Exploration. The PRA provides a decision-making tool to balance mission risk, performance, and cost.
2004-07-19
Technical Paper
2004-01-2474
Robert T. Bigelow, Richard R. Chu, Jay K. Ingham
This Life Support Laboratory consists of a simulator of the spacecraft called Nautilus, which houses Air Revitalization Subsystem, Atmospheric Control and Supply, and Fire Detection and Suppression in the Equipment Area. There are supporting facilities including a Human Metabolic Simulator, simulated Low and Moderate Temperature Coolant Loop, chemical analysis bench, purified water supply, vacuum and gas supplies. These facilities are scheduled to be completed and start to operate for demonstration purposes by March 2005. There are an ARES Ground Model (AGM) and a Trace Contaminant Control Assembly in the ARS. The latter will be integrated with the AGM and a Condensing Heat Exchanger. The unit of AGM is being engineered, built, and will be delivered in early 2005 by EADS Space Division. These assemblies will be operated for sensitivity analysis, integration and optimization studies. The main goal is the achievement for optimal recovery of oxygen.
2004-07-19
Technical Paper
2004-01-2469
MariaCristina Tosi, Luca Tentoni, Antoine Joulot, Jose' Antonio, Romera Perez
The Automated Transfer Vehicle (ATV) Thermal Control System (TCS) has the task to ensure the required internal environment at level of pressurized module and to thermally control the not pressurised modules and installed equipment, using passive and active control means, in response to the relevant applicable requirements. The ATV vehicle is assially subdivided into three main modules: the Integrated Cargo Carrier (ICC), the Equipped Avionics Bay (EAB) and the Equipped Propulsion Bay (EPB). Each of these modules present elaborated and specific thermal design solutions, to satisfy the different required operative tasks. The extensive thermal analysis campaign performed at ATV vehicle level and in progress for the next Qualification Review (QR) to justify and support the thermal control design solutions and verification status is described.
2004-07-19
Technical Paper
2004-01-2468
W. Andrew Jackson, Audra Morse, Tania Ho, Greg Collins
Biological pre-treatment of liquid waste could potentially offer equivalent mass savings for long term space habitation. Previous work has demonstrated the technological feasibility. However, limited work has been conducted on optimizing the biological reactors or fully characterizing the biochemical transformations occurring within the reactors. The objective of these studies was to provide long-term operating data on a proposed and well studied reactor configuration, and explore the effects of RR on system performance. The water recovery system has been in successful operation for over 2 years. Data to be presented will include both typical removal efficiencies for nitrogen species, DOC as well as important water quality parameters. In addition the effect of recycle ratio (2X, 5X, 10X, and 20X) will be quantified.
2004-07-19
Technical Paper
2004-01-2466
Arthur A. Teixeira, David P. Chynoweth, John M. Owens, Elana Rich, Amy L. Dedrick, Patrick J. Haley
This paper reports on fabrication, installation, start-up and shakedown of a full-scale prototype solid waste management system designed to be a principal component in a bio-regenerative solid waste management system to support a 6-person crew on long-term space missions. System design is based upon a patented process for odorless bioconversion of organic solid wastes to biogas and compost by anaerobic digestion. The system consists of five reactors and two gas-liquid separators designed for operation under conditions of micro-gravity. During any week of operation, one reactor is used for feed collection and compaction, three for stage-wise anaerobic composting, and one for post-treatment aerobic stabilization, while simultaneously serving as a bio-filter in the pretreatment of cabin air within the air revitalization subsystem. Each reactor carries its one-week charge of feedstock through all five stages of bioconversion in completing a five-week sequential batch cycle.
2004-07-19
Technical Paper
2004-01-2467
Dawn R. Whitaker, John W. Lane, James E. Alleman, Rebecca Riaño
Solids thermophilic aerobic reactor (STAR) processing of biodegradable solid waste residuals uses high temperature conditions to reduce waste volume, inactivate pathogens, and render products that may enter the recycle system by providing plant substrate, fish food, and mushroom growth medium. The STAR process recovers and enables the reuse of nutrients, water, and carbon. During the time of this study, STAR was operated at a 3% solids loading rate, with an 11-day retention time at a temperature range of 50-55°C. This document presents the following details: a the evolution to date of the STAR reactor b review of reactor operation and analytical methods c a synopsis of the performance results and related discussion, and d a synopsis of future goals relative to this project's associated research roadmap.
2004-07-19
Technical Paper
2004-01-2465
Richard F. Strayer, Kristina Reid, Tony J. Rector, Mary P. Hummerick, Jay L. Garland
The purpose of this research is to determine the feasibility of a unique denitrifying composter to stabilize trash from space-habitation (STS, ISS, ALS) life support activities. Design criteria were derived from variables to be manipulated and those to be held constant. A pre-existing aerobic composter was used and engineering tests run to ensure that requirements were met. Key experimental variables were identified: NO3- concentration and rate of addition, O2 concentration, mixing duration and frequency, and inoculum. Independent variables were pH, temperature, moisture, C:N ratio, feed material, size reduction, feed addition rate, and mode of operation. Important performance parameters included: maximization of desired outcomes – BOD5 removal, CO2 production, waste stabilization, and denitrification – and minimization of undesired products – N2O, NH3, and volatile organic compounds.
2004-07-19
Technical Paper
2004-01-2464
Kimberly L. Jones, Joffrey Leevy, Samantha LaHee
This study evaluates the use of microfiltration (MF), low pressure RO (LPRO) and nanofiltration (NF) membranes for use in a treatment train for recycled wastewater. Specifically, a MF membrane will act as pretreatment for RO/NF membranes. Contaminants of concern for the membrane system include biosolids and surfactant micelles for the MF membrane, and ammonium ions, urea, surfactant monomers, and salts for the RO/NF system. These contaminants will be reduced to meet existing EPA and NASA standards using these membrane systems. The goal is to achieve high removal rates (>95% for these contaminants) while maintaining high flux and low fouling of the membranes, as membrane treatment is the last treatment step before final disinfection of the recycled wastewater. This paper outlines the experimental plan for designing the integrated membrane system and explains the potential benefits of such a system.
2004-07-19
Technical Paper
2004-01-2462
Audra Morse, W. Andrew Jackson, Srikara Kaparthi
Simulated wastewater, known as early surface mission wastewater, treated in previous experiments at JSC and TTU included urinal flush water, shower water, humidity condensate, oral hygiene water, and hand wash water. In reality, there is a difference between the early surface mission wastewater and the International Space Station wastewater. The ISS does not have a shower or hand wash, which contributes approximately 59 percent of the make-up water treated. The average influent ammonia concentration in the simulated wastewater treated by the TTU water reclamation system frequently exceeds 500 mg/L. Removal of the shower make-up water in simulated wastewater will result in a significant increase in the ammonia concentration, resulting in higher influent pH values and ammonia concentrations that may be inhibitory. Biological treatment technologies have suitably treated the diluted waste stream but a more concentrated waste stream may present a greater challenge.
2004-07-19
Technical Paper
2004-01-2461
Eric McLamore, Audra Morse, Andrew Jackson, Ken Rainwater
The objective of this study was to investigate the potential of membrane-aerated bioreactors as long term microgravity compatible nitrifying biological water processors (BWP). A small-scale (1/20th) replica of the water recovery system (WRS) at JSC has been operated and extensively analyzed at Texas Tech University (TTU) for the last 3 years. The current nitrifying tubular reactor at JSC and TTU has experienced difficulty in maintaining efficiency and low maintenance. In an attempt to increase the efficiency of the biological portion of the WRS, a membrane-aerated bioreactor (MABR) was constructed and operated using the same parameters as the TTU-WRS in August 2003. The MABR is downstream of an anaerobic packed bed and is designed to promote nitrification (NH4 → NOx). The MABR achieved a percent nitrification of 61% and 55% for recycle ratios of 10 and 20, respectively.
2004-07-19
Technical Paper
2004-01-2457
Jeffery T. Iverson, Thomas M. Crabb, Mark C. Lee, Bill Butrymowicz
Unique challenges arise during the design of temperature and humidity control systems (THCS) for use in microgravity. The design of the Plant Research Unit’s (PRU) THCS builds on the experience gained during the Biomass Production System (BPS) project and extends the understanding of the critical design variables and necessary technical advancements to allow for longer on-orbit operation. Previous systems have been limited by loss of prime, clogging in the porous plates and component reliability. Design of THCSs for long-duration space flight experiments requires the mitigation of these issues as well as a complete understanding of the relevant design variables. In addition to the normal design variables (e.g. mass, power, volume), a complex and interdependent relationship exists between the THCS variables including operational temperature range, operational humidity range, required humidity condensation rate and system air flow.
2004-07-19
Technical Paper
2004-01-2459
Gerard Heyenga, Louis Stodieck, Alex Hoehn, Mark Kliss, Cameron Blackford
The present suite of advanced space plant cultivation facilities require a significant level of resources to launch and maintain in flight. The facilities are designed to accommodate a broad size range of plant species and are, therefore, not configured to support the specific growth requirements of small plant species such as Arabidopsis thaliana at maximum efficiency with respect to mass and power. The facilities are equally not configured to support automated plant harvesting or tissue processing procedures, but rely on crew intervention and time. The recent reorganization of both spaceflight opportunities and allocation of limited in-flight resources demand that experiments be conducted with optimal efficiency. The emergence of A. thaliana as a dominant space flight model organism utilized in research on vegetative and reproductive phase biology provides strong justification for the establishment of a dedicated cultivation system for this species.
2004-07-19
Technical Paper
2004-01-2455
Hans-Dieter Seelig, David M. Klaus, Louis S. Stodieck, Alexander Hoehn
This study investigated the possibility of detecting water deficit stress in plants by using optical signals collected from leaves. Two theoretical approaches have been investigated. In principle, chlorophyll fluorescence can be used to measure generally stressful situations in plants. Our review, however, found that simple ratios of coarsely time-resolved chlorophyll fluorescence, such as maximum fluorescence over fluorescence at steady state, appear to be incapable of adequately distinguishing water stress from other stress factors. A second principle being investigated involves correlation of light absorption within leaves to leaf-water-content using water absorbing and non-water absorbing wavelengths. Our investigation concentrated on defining and eliminating as many extraneous variables as possible.
2004-07-19
Technical Paper
2004-01-2456
Jessica J. Prenger, Susan L. Steinberg, Daniel Haddock, Joey H. Norikane, Howard G. Levine
The WONDER space flight experiment will compare the operation of both substrate-based and porous tube nutrient delivery systems (NDS) under microgravity conditions. Each NDS will be evaluated with three moisture availability regimes, and moisture sensing will be critical for the operation and evaluation of the systems. Orbital Technologies (Madison, WI) has developed a space flight-rated temperature and moisture acquisition system (TMAS) for measuring water content of plant growth medium. The sensors were evaluated in 0.25-1 mm and 1-2 mm baked ceramic aggregate (Profile and Turface, respectively). The sensors' pooled standard deviations ranged from approximately 2% to 5% relative water content (RWC), and root mean square error between sensor RWC and measured RWC was greater than 3% using linear calibration.
2004-07-19
Technical Paper
2004-01-2453
Laurie J. Peterson, Paul D. Bolton
The NASA Orbiter was designed with the ability to store a limited amount of wastewater on board. Due to several factors including the storage capacity of the waste tank, the number of crew members onboard, and the length of a mission, the Orbiter must vent wastewater overboard at regular intervals. During a typical Orbiter mission to the International Space Station (ISS), the Orbiter must vent a significant amount of wastewater at least once during the docked timeframe. A future ISS program requirement that affects the Orbiter while docked, is elimination of wastewater venting, specifically urine, once the Japanese Experiment Module (JEM) is added to the orbiting facility. A working group was developed to address elimination of orbiter wastewater venting with members from both the Orbiter and ISS programs. Multiple options exist to meet this requirement.
2004-07-19
Technical Paper
2004-01-2434
Yu. A. Berkovich, A. N. Erokhin, S. O. Smolianina, J. J. Prenger, H. G. Levine
A cylindrical plant growth chamber (PGC) referred to as PHYTOCYCLE-SD was designed and developed as a conveyor-type cultivation system for continuous production of salad crops. The volume of the plant growth chamber is 0.19 m3, and the illuminated crop area is 0.86 m2. The PGC is comprised of a convex cylindrical planting surface with a spiral cylindrical light unit (LU) above the planting surface. The LU consists of 15 light-emitting diode (LED) panels distributed on the spiral cylindrical surface with adjustable operating currents between 10 to 35 mA. The average photosynthetic photon flux (PPF, 400–700 nm wavelengths) level at the crop surface (3 cm below the light bar) is 350 μmol m−2 s−1 and the LU power consumption is approximately 440 W. Leaf area as a function of the radius of the cylindrical growth chamber has been determined experimentally. Light intensity and distribution inside cylindrical growth chamber has been measured and modeled.
2004-07-19
Technical Paper
2004-01-2433
J. J. Maas, M. J. Mischnick
The CANDS (Circulating, Aeration, and Nutrient Delivery System) Phase II SBIR is currently developing and testing methods and procedures to control moisture, oxygen, and temperature in the root zone of a particulate based micro-gravity nutrient delivery system. The completion of the first year and a half of the CANDS Phase II SBIR has shown significant engineering developments towards environmental control of the root zone. These developments include the measurement of root zone oxygen content, characterization of forced and flood-ebb aeration rates, successful control of root zone moisture using miniature heat-pulse moisture sensors, and successful control of root zone temperature via an insulating/temperature controlling water jacket. At the conclusion of the CANDS Phase II SBIR an integrated root zone environmental control system will be constructed for integration into plant growth systems to eliminate the uncertainties that exist in current plant growth data.
2004-07-19
Technical Paper
2004-01-2437
Hiroyuki Miyajima, Tomofumi Hirosaki, Yoshio Ishikawa
A Regenerative Life Support System (RLSS) is a system that establishes self-sustained material recycling and circulation within a space base on the Moon or Mars. This is a large-scale and complicated system comprising a lot of components such as humans, plants and material circulation system. A RLSS contains many factors with uncertainty, such as dynamics of plants and humans, and failure and performance deterioration of devices. In addition, a RLSS is a large-scale and complicated system extending gradually. An environment with uncertainty or a large-scale and complicated system may not be properly addressed by a centralized system. In particular, such a system cannot always gather accurate information in one center in a frequently shifting environment, thus appropriate processing may be difficult. Therefore, we tried autonomous decentralization of information or decision-making using a Multi-Agent System (MAS).
2004-07-19
Technical Paper
2004-01-2435
Geoffrey Waters, Youbin Zheng, Danuta Gidzinski, Michael Dixon
Due to its large proportion of edible biomass, beet (Beta vulgaris) has high potential as a candidate crop for bioregenerative life support systems. This paper summarizes data collected for beet under batch and staged stand culture in closed environment chambers. Full stand trials were conducted under the following conditions: 1000 μL L−1 atmospheric carbon dioxide concentration, light intensities ranging from 400–600 μmol m−2 s−1 PAR with a 14 hour photoperiod, 73% ± 5% relative humidity, a 26/20 °C day/night temperature regime and a fixed planting density of 17.6 plants m−2. For batch planted stands, total edible yield was determined to be 28.3 g dry weight basis (dwb) with a 95% Confidence Interval (CI) of [24.7, 31.8] g plant−1 with a harvest index of 94%. Under similar conditions, yield for staged beet stands was 31.4 g dwb with a 95% CI of [24.54, 38.31] g plant−1. Water use efficiency under these same conditions was found to be 0.003 mol C mol−1 H2O.
2004-07-19
Technical Paper
2004-01-2439
Theresa Klein, Devika Subramanian, David Kortenkamp, Scott Bell
Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges that are addressed in this paper. We have developed a controller using reinforcement learning [Barto&Sutton], which actively explores the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated this controller using Biosim, our discrete event simulation of an advanced life support system. This simulation supports all life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. Our algorithm for reinforcement learning discovered unobvious strategies for maximizing mission length. By exploiting nonlinearities in the simulation dynamics, the learned controller outperforms a controller designed by an expert.
2004-07-19
Technical Paper
2004-01-2438
H. Y. (Jannivine) Yeh, Cheryl B. Brown, Frank F. Jeng, Chin H. Lin, Michael K. Ewert
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft® Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of the ALS regenerative system technologies (1, 2). This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically.
2004-07-19
Technical Paper
2004-01-2441
Sherif Abdelwahed, Jian Wu, Gautam Biswas, John W. Ramirez, Eric J.-Manders
This paper discusses a hierarchical online fault-adaptive control approach for Advanced Life Support (ALS) Systems. ALS systems contain a number of complex interacting subsystems. To avoid complexity in the models and online analysis, diagnosis and fault-adaptive control is achieved by local units. To maintain overall performance, the problem of resource management for contending concurrent subsystems has to be addressed. We implement a control structure, where predefined set-point specifications for system operation are used to derive optimizing utility functions for the subsystem controllers. We apply this approach in situations where a fault occurs in a system, and once the fault is isolated and identified, the controllers use the updated system model to derive new set point specifications and utility functions for the faulty system.
Viewing 1 to 30 of 5220

Filter

  • Range:
    to:
  • Year: