Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 14572
2010-04-12
Journal Article
2010-01-0393
Baeyoung Kim, Hyunjun Kim, YoungTak Son, Hae-ryong Kim, Haekyung Kim, Myung-Won Suh
The noise of interior plastic parts has been one of the major driving factors in the design of automotive interior assemblies. This phenomenon is one of the major contributors to the perceived quality in a vehicle. The noise is caused by interior plastic parts and other parts as a result of permanent deformation. Traditionally, noise issues have been identified and rectified through extensive hardware testing. However, to reduce the product development cycle and minimize the number of costly hardware builds, hardware testing must rely on engineering analysis and upfront simulation in the design cycle. In this paper, an analytical study to reduce permanent deformation in a cockpit module is presented. The analytical investigation utilizes a novel and practical methodology, which is implemented through the software tools, ABAQUS and iSight, for the identification and minimization of permanent deformation.
2014-04-01
Journal Article
2014-01-1018
Robert V. Petrach, David Schall, Qian Zou, Gary Barber, Randy Gu, Laila Guessous
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model.
2014-04-20
Journal Article
2014-01-9098
Ala Qattawi, Mahmoud Abdelhamid, Ahmad Mayyas, Mohammed Omar
1 The manufacturing of Origami based sheet metal products is a promising technology, mostly in terms of reducing the tooling and process complexity. This procedure can also be called fold forming, as it depends on exclusively shaping the required geometry via sequence of bends. However, the design analysis and modeling of folded sheet metal products are not fully mature, especially in terms of determining the best approach for transferring the analysis from a three-dimensional (3D) to a two-dimensional (2D) context. This manuscript discusses the extension of the Origami technique to the fold forming of sheet metal products represented in modeling approach and design considerations for the topological variations, the geometrical validity, and the variance of stress-based performance. This paper also details the optimization metrics that were developed to reflect the design and manufacturing differences among the possible topological and geometrical options for a single part design.
2008-04-14
Journal Article
2008-01-0545
Sayed A. Nassar, Xianjie Yang, Saravanan Ganeshmuthy
In this paper, an emphasis is put on describing the elastic and plastic deformation behavior of the bolted joint. The bolt material is assumed to be plastic hardening. A nonlinear combined stress model is established for a typical bolted joint for the purpose of studying its behavior under a yield tightening. The combined effect of axial and torsional stresses in the tightened threaded fastener is considered. A new approach for yield tightening under ideal plastic bolt was proposed, and the effects of the thread and bearing frictional coefficients on the clamp load prediction are evaluated. The prediction precision of deformation behavior of the bolted joint under yield tightening for the strain hardening bolt material are studied experimentally.
2001-07-09
Technical Paper
2001-01-2201
Thomas J. Hagale
There are a large number of space structures, orbital replacement units (ORUs) and other components that must be transported to orbit on a regular basis for the assembly and maintenance of the International Space Station (ISS). Some of this hardware will be ferried on the Spacelab Logistics Pallet (SLP), which has a long and reliable history of space flight successes. The carrier is well used, well qualified, and very adaptable for repeated use in accommodating cargoes of various sizes and shapes. This paper presents an overview of past, present and future hardware design solutions that accommodate EVA operations on the SLP. It further demonstrates how analysis techniques and design considerations have influenced the hardware development, EVA operations, and compliance with human engineering requirements for the SLP.
2016-11-16
Magazine
Focus on advanced safety systems and human-factor interventions The impact of REACH on the aviation sector Considered the most comprehensive chemical-regulation legislation to date, REACH presents serious ramifications for the aircraft industry. Lightweighting: What's Next? Experts weigh in on the challenges and future enablers in the battle to reduce vehicle mass. The best of COMVEC 2016 Autonomous vehicles and improved fuel efficiency via advanced powertrain solutions are pressing topics detailed in this select group of technical papers from the SAE Commercial Vehicle Engineering Congress. Optimizing waste heat recovery for long-haul trucks Autonomous solutions in agriculture Downsizing a HD diesel engine for off-highway applications Zero-emissions electric aircraft: Theory vs. reality
2012-08-15
Magazine
Everything's looking up for aircraft with Internet connections Satellites will make global connectivity possible. Composite bonds put to the test The application of adhesive bonding as a joining technology for CFRP aircraft structures is essential for the realization of novel lightweight design concepts. Aerospace leads in additive manufacturing The unique advantages of making metal parts from powder-bed additive manufacturing are looking attractive to engine manufacturers. Europe's aerospace sector at a crossroads Europe is facing a massive black hole in its future defense procurement portfolio. What will replace today's fighters and trainers when the present order backlogs have been produced?
2011-06-08
Magazine
Avionics go to war Advanced helmet sight systems are being designed to help the situational awareness of those pilots who actually still fly aircraft, while also being seamlessly integrated with the aircraft itself. Model military engine behavior While the concept of a variable cycle engine is not new, recent advances in engine architecture technology suggest that adding a second bypass stream to a traditional turbofan can provide significant benefits. Alternative seals for alternative fuels When considering seal compatibility an aircraft from traditional jet fuel to a synthetic fuel presents an interesting technical challenge that has both financial and practical considerations, especially for aircraft that are already in service.
2014-11-05
Magazine
Adaptive trimming of composite parts Some of the techniques used in the Adaptive Manufacturing System are normal aerospace processes. The unique and enabling process is the scanning and adaptive trimming.
2014-02-01
Magazine
Evaluation of heavy-vehicle aerodynamic drag In an attempt to achieve a balance between Reynolds number, model scale, and tunnel blockage issues, a 1:3 scale heavy-vehicle testing program has been initiated at the Monash University 1.4-MW wind tunnel. Validating performance suspension parts advances A forum at the 2013 SEMA Show discussed three approaches to ensure performance parts compliance with Federal Motor Vehicle Safety Standard 126. Panelists also explained how simulation data, and kinematics and compliance measurements, can improve performance parts design. Active safety starts in the pilot's seat Dassault Aviation's next-generation integrated digital avionics systems contribute to enhanced air safety in civil applications. Chevrolet ups the performance ante with MY2015 Corvette Z06 Stiffer-bodied sports car gains wind-aided performance with supercharging and downforce for faster lap times.
2015-09-23
WIP Standard
AIR4783A
This SAE Aerospace Information Report (AIR) presents a glossary of terms commonly utilized in the ground delivery of fuel to an aircraft and some terms relating to the aircraft being refueled. The purpose of this document is to provide background material for educational purposes to persons designing, building, and using aircraft ground refueling delivery systems.
2014-01-29
WIP Standard
AIR825/13A
This guide is intended to promote safe designs, operations and maintenance on aircraft and ground support oxygen systems. This is also a summary of some work by the ASTM G 4 Committee related to oxygen fire investigations and design concerns to reduce the risk of an oxygen fire. There have been many recent technological advances and additional test data is available for evaluating and controlling combustion hazards in oxygen equipment. Standards that use this new information are rapidly evolving. A guide is needed to assist organizations and persons not completely familiar with this process to provide oxygen systems with minimum risks of combustion. This guide does not necessarily address all the detailed issues and provide all data that will be needed. For a complete analysis, supplemental publications need to be consulted. This guide does discuss the basics of oxygen systems fire hazards. The hazard analysis process is discussed and a simple example to explain this process.
2017-05-03
WIP Standard
AIR6952
The pupose of this SAE AIR is to provide guidelines for sizing stored energy systems in use in emergency braking systems, in light of their intended purpose and applicable certification regulations.
2015-05-20
WIP Standard
AIR6510
This SAE Aerospace Information Report (AIR) comprises the technical terms and nomenclature, together with their definitions and abbreviations that are used in Aircraft Fuel Systems.
2013-05-05
WIP Standard
AIR5273A
This AIR provides descriptions of aircraft actuation system failure-detection methods. The methods are those used for ground and in-flight detection of failures in electrohydraulic actuation systems for primary flight control. The AIR concentrates on full Fly-By-Wire (FBW) flight control actuation though it includes one augmented-control system. The background to the subject is discussed in terms of the impact that factors such as the system architecture have on the detection methods chosen for the flight control system. The types of failure covered by each monitoring technique are listed and discussed in general. The way in which these techniques have evolved is illustrated with a historical review of the methods adopted for a series of aircraft, arranged approximately in design chronological order.
2014-11-25
WIP Standard
AIR5464A
Over the past decade several metal clad fibers and fabrics have been developed to provide aerospace vehicle designers with a conductive, lighter weight alternative to coated copper or steel for shielding and harness overbraids of electrical cables. Several of these candidates have been unable to provide the strength or thermal stability necessary for the aerospace environment. However, the aramid-based products have shown remarkable resistance to the rigorous environment of aerospace vehicles. Concurrent with these fiber developments, there have been changes in the structures of aerospace vehicles involving greater use of nonmetallic outer surfaces. This has resulted in a need for increased shielding of electrical cables which adds substantial weight to the vehicle. Thus, a lighter weight shielding material has become more critical to meet the performance requirements of the vehicle.
2014-07-21
WIP Standard
AIR4923A
This SAE Aerospace Information Report (AIR) provides a tabular listing of materials, procurement specifications, and mechanical properties for bolts and screws developed for use on aerospace propulsion systems designed using the U.S. customary system or the SI system.

The list is intended to give a brief overview of the various kinds of SAE aerospace procurement specifications available when developing bolt and screw part standards.

2013-03-11
WIP Standard
AIR5567B
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
2015-04-21
WIP Standard
AIR6325
This Aerospace Information Report (AIR) is intended to provide comprehensive reference and background information pertaining to aircraft point level sensing
2013-10-21
WIP Standard
AIR6280
This Aerospace Information Report will summarize several existing aircraft landing gear shimmy analysis techniques and provide guidance on the synthesis and testing of tire properties, strut properties, and other landing gear mechanical properties that support the various shimmy analysis methods. This AIR is applicable to large and small fixed wing and rotary wing aircraft for military or civilian use.
2016-03-15
WIP Standard
AIR6411
Provide information and guidance for landing gear operation in cold temperature environment. Covers all operational aspects on ground and in flight. Includes effects on: tires, wheels, brakes, shock strut, seals, and actuation.
2016-02-08
WIP Standard
AIR6384
This SAE Aerospace Information Report (AIR) is intended to provide guidance for installing GFI/AFCB in the fuel pumps power circuits for protection of fuel vapors ignition inside the tank in case of a failure that causing arcing inside the pump. Besides, this AIR is also intended to provide minimum specification and testing for ground fault interrupter (GFI) and arc fault circuit breaker (AFCB), addressing the issues associated with the verification requirements based on current regulatory guidance per AC25.981-1C.
2016-04-21
WIP Standard
AIR6380
Overview of thermal management system Key requirements and design considerations for thermal management system Lessons learned
CURRENT
2000-09-30
Standard
AIR4142
HISTORICAL
2011-02-10
Standard
AIR1660
A fuel level control valve/system controls the quantity of fuel in a tank being filled or emptied. This document provides a general familiarization with these mechanisms (e.g. forms they take, functions, system design considerations). This document provides the aircraft fuel system designer with information about these mechanisms/devices, so that he can prescribe the types of level control valves/systems which are best suited for his particular fuel system configuration.
2015-12-03
WIP Standard
AIR1594D
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document.
Viewing 1 to 30 of 14572

Filter

  • Range:
    to:
  • Year: