Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 7818
2011-04-12
Technical Paper
2011-01-0177
Pascal Theissen, Johannes Wojciak, Kirstin Heuler, Rainer Demuth, Thomas Indinger, Nikolaus Adams
Unsteady aerodynamic flow phenomena are investigated in the wind tunnel by oscillating a realistic 50% scale model around its vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi-steady loads. In particular, the unsteady yaw moment exceeds the quasi-steady approximation by 80%. On the other hand, side force and roll moment are over predicted by quasi-steady approximation but exhibit a significant time delay. Using hotwire anemometry, a delayed reaction of the wake flow of Δt/T = 0.15 is observed, which is thought to be the principal cause for the differences between unsteady and quasi-steady aerodynamic loads. A schematic mechanism explaining these differences due to the delayed reaction of the wake flow is proposed.
2011-04-12
Technical Paper
2011-01-0176
Sinisa Krajnovic
The paper discusses an appropriate usage of large eddy simulation (LES) in external vehicle aerodynamics. Three different applications, wheelhouse flow, gusty flow and active flow control, are used to demonstrate how LES can be used to obtain new knowledge about vehicle flows. The three examples illustrate the information that can be extracted using LES in vehicle aerodynamics and show the potential of LES in explorations of this complex flow.
2011-04-12
Journal Article
2011-01-0172
David Sims-Williams
This paper provides a published counterpart to the address of the same title at the 2010 SAE World Congress. A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of road side obstacles. This last term is of greatest significance. Various works related to the characterization, simulation and effects of on-road turbulence are compared together on the turbulence spectrum to highlight differences and similarities. The different works involve different geometries and different approaches to simulating cross wind transients but together these works provide guidance on the most important aspects of the unsteadiness. On-road transients include a range of length scales spanning several orders of magnitude but the most important scales are in the in the 2-20 vehicle length range.
2011-04-12
Technical Paper
2011-01-0171
Dirk Baeder, Thomas Indinger, Nikolaus Adams, Friedhelm Decker
Computational Fluid Dynamics (CFD) is state of the art in the aerodynamic development process of vehicles nowadays. With increasing computer power the numerical simulations including meshing and turbulence modeling are capturing the complex geometry of vehicles and the flow field behavior around and behind a bluff body in more detail. The ultimate goal for realistic automotive simulations is to model the under-hood as well. In this study vehicle simulations using the finite volume open source CFD program OpenFOAM® are validated with own experiments on a modified generic quarter-scale SAE body with under-hood flow. A model radiator was included to take account of the pressure drop in the under-hood compartment. Force and pressure measurements around the car, total-pressure and hot-wire measurements in the car flow field and surface flow patterns were simulated and compared with the experiment.
2011-04-12
Technical Paper
2011-01-0170
Ashok D. Khondge, Sandeep Sovani, Gunjan Verma
Thorough design exploration is essential for improving vehicle performance in various aspects such as aerodynamic drag. Shape optimization algorithms in combination with computational tools such as Computational Fluid Dynamics (CFD) play an important role in design exploration. The present work describes a Free-Form Deformation (FFD) approach implemented within a general purpose CFD code for parameterization and modification of the aerodynamic shape of real-life vehicle models. Various vehicle shape parameters are constructed and utilized to change the shape of a vehicle using a mesh morphing technique based on the FFD algorithm. Based on input and output parameters, a design of experiments (DOE) matrix is created. CFD simulations are run and a response surface is constructed to study the sensitivity of the output parameter (aerodynamic drag) to variations in each input parameter.
2011-04-12
Technical Paper
2011-01-0169
Robert Louis Lietz
Recent advances in morphing, simulation, and optimization technologies have enabled analytically driven aerodynamic shape optimization to become a reality. This paper will discuss the integration of these technologies into a single process which enables the aerodynamicist to optimize vehicle shape as well as gain a much deeper understanding of the design space around a given exterior theme.
2011-04-12
Technical Paper
2011-01-0153
Makoto Tsubokura, See Yuan Cheng, Takuji Nakashima, Yoshihiro Okada, Takahide Nouzawa
We investigate the pitching stability characteristics of sedan-type vehicles using large-eddy simulation (LES) technique. Pitching oscillation is a commonly encountered phenomenon when a vehicle is running on a road. Attributed to the change in a vehicle's position during pitching, the flow field around it is altered accordingly. This causes a change in aerodynamic forces and moments exerted on the vehicle. The resulting vehicle's response is complex and assumed to be unsteady, which is too complicated to be interpreted in a conventional wind tunnel or using a numerical method that relies on the steady state solution. Hence, we developed an LES method for solving unsteady aerodynamic forces and moments acting on a vehicle during pitching. The pitching motion of a vehicle during LES was produced by using the arbitrary Lagrangian-Eulerian technique. We compared two simplified vehicle models representing actual sedan-type vehicles with different pitching stability characteristics.
2011-04-12
Journal Article
2011-01-0151
Taeyoung Han, Chris Hill, Shailesh Jindal
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
2011-04-12
Journal Article
2011-01-0154
David Schroeck, Werner Krantz, Nils Widdecke, Jochen Wiedemann
In this paper the effect of aerodynamic modifications that influence the unsteady aerodynamic properties of a vehicle on the response of the closed loop system driver-vehicle under side wind conditions is investigated. In today's aerodynamic optimization the side wind sensitivity of a vehicle is determined from steady state values measured in the wind tunnel. There, the vehicle is rotated with respect to the wind tunnel flow to create an angle of attack. In this approach however, the gustiness that is inherent in natural wind is not reproduced. Further, unsteady forces and moments acting on the vehicle are not measured due to the limited dynamic response of the commonly used wind tunnel balances. Therefore, a new method is introduced, overcoming the shortcomings of the current steady state approach. The method consists of the reproduction of the properties of natural stochastic crosswind that are essential for the determination of the side wind sensitivity of a vehicle.
2011-04-12
Technical Paper
2011-01-0158
Stephane Cyr, Kang-Duck Ih, Sang-Hyun Park
Aerodynamic simulation results are most of the time compared to wind tunnel results. It is too often simplistically believed that it suffice to take the CAD geometry of a car, prepare and run a CFD simulation to obtain results that should be comparable. With the industry requesting accuracies of a few drag counts when comparing CFD to wind tunnel results, a careful analysis of the element susceptible of creating a difference in the results is in order. In this project a detailed 1:4 scale model of the Hyundai Genesis was tested in the model wind tunnel of the FKFS. Five different underbody panel configurations of the car were tested going from a fully paneled car to a car without panels. The impact of the moving versus static ground was also tested, providing over all ten different experimental results for this car model.
2011-04-12
Journal Article
2011-01-0160
Oliver Mankowski, David Sims-Williams, Robert Dominy, Bradley Duncan, Joaquin Gargoloff
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, the unsteady wakes from other vehicles and as a result of traversing through the stationary wakes of road side obstacles. There is increasing concern about potential differences in aerodynamic behaviour measured in steady flow wind tunnel conditions and that which occurs for vehicles on the road. It is possible to introduce turbulence into the wind tunnel environment (e.g. by developing active turbulence generators) but on-road turbulence is wide ranging in terms of both its intensity and frequency and it would be beneficial to better understand what aspects of the turbulence are of greatest importance to the aerodynamic performance of vehicles. There has been significant recent work on the characterisation of turbulent airflow relevant to road vehicles. The simulation of this time-varying airflow is now becoming possible in wind tunnels and in CFD.
2011-04-12
Journal Article
2011-01-0159
Nicholas R. Oettle, David Sims-Williams, Robert Dominy, Charles Darlington, Claire Freeman
The in-cabin sound pressure level response of a vehicle in yawed wind conditions can differ significantly between the smooth flow conditions of the aeroacoustic wind tunnel and the higher turbulence, transient flow conditions experienced on the road. Previous research has shown that under low turbulence conditions there is close agreement between the variation with yaw of in-cabin sound pressure level on the road and in the wind tunnel. However, under transient conditions, sound pressure levels on the road were found to show a smaller increase due to yaw than predicted by the wind tunnel, specifically near the leeward sideglass region. The research presented here investigates the links between transient flow and aeroacoustics. The effect of small geometry changes upon the aeroacoustic response of the vehicle has been investigated.
2011-04-12
Technical Paper
2011-01-0161
Tsuneaki Ishima, Yasushi Takahashi, Haruki Okado, Yasukazu Baba, Tomio Obokata
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
2011-04-12
Technical Paper
2011-01-0164
Johannes Wojciak, Pascal Theissen, Kirstin Heuler, Thomas Indinger, Nikolaus Adams, Rainer Demuth
Unsteady aerodynamic flow phenomena are investigated in a wind tunnel by oscillating a realistic 50% scale model around the vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi steady loads. In particular, the unsteady yaw moment exceeds the quasi steady approximation significantly. On the other hand, side force and roll moment are over predicted by quasi steady approximation but exhibit a significant time delay. Part 2 of this study proves that a delayed and enhanced response of the surface pressures at the rear side of the vehicle is responsible for the differences between unsteady and quasi steady loads. The pressure changes at the vehicle front, however, are shown to have similar amplitudes and almost no phase shift compared to quasi steady flow conditions.
2011-04-12
Technical Paper
2011-01-0163
Robert Lietz, Burkhard Hupertz, Neil Lewington, Rafael Silveira, Christian Taucher
A benchmark study was conducted to assess the capability of an open source CFD based process to accurately simulate the physics of the flow field around various vehicle types. The ICON FOAMpro process was used to simulate the flow field of four baseline geometries of a Truck, CD-Car, B-Car and an SUV. Further studies were carried out to assess the effects of geometry variations on the predicted aerodynamic lift and drag. A Detached-Eddy Simulation (DES) approach was chosen for the benchmarks. In addition to aerodynamic lift and drag values, the results for surface pressure data, surface and wake flow fields were calculated. These results were compared with values obtained using Ford's existing CFD processes.
2011-04-12
Journal Article
2011-01-0166
David Sims-Williams, David Marwood, Adam Sprot
The rear end geometry of road vehicles has a significant impact on aerodynamic drag and hence on energy consumption. Notchback (sedan) geometries can produce a particularly complex flow structure which can include substantial flow asymmetry. However, the interrelation between rear end geometry, flow asymmetry and aerodynamic drag has lacked previous published systematic investigation. This work examines notchback flows using a family of 16 parametric idealized models. A range of techniques are employed including surface flow visualization, force measurement, multi-hole probe measurements in the wake, PIV over the backlight and trunk deck and CFD. It is shown that, for the range of notchback geometries investigated here, a simple offset applied to the effective backlight angle can collapse the drag coefficient onto the drag vs backlight angle curve of fastback geometries.
2011-04-12
Technical Paper
2011-01-0510
Megumu Oshima, Kanya Nara, Tatsuhiko Yoshimura
We have constructed a design review system in which Full Process and Quick Design Review processes are selectively used according to the degree of newness in a design change. The Full Process Design Review is conducted for a review of system or part designs having a high level of newness and the tools and process used in this review were standardized. The Quick Design Review is newly developed design review process that could be conducted in a quicker and simpler manner for designs involving a medium level of newness in order to effectively prevent design-related problems. The Quick Design Review uses a changes list and Design Review Based on Failure Mode (DRBFM) [1] worksheets to focus on the changed points. This method enables the engineers involved to identify problems and to devise solutions efficiently and effectively through discussions.
2011-04-12
Technical Paper
2011-01-0523
William Nicholas Dawes, William Kellar PhD, Simon Harvey PhD, Neil Eccles PhD
Successful product development, especially in motorsport, increasingly depends not just on the ability to simulate aero-thermal behavior of complex geometrical configurations, but also the ability to automate these simulations within a workflow and perform as many simulations as possible within constrained time frames. The core of these aero-thermal simulations - and usually the main bottleneck - is generating the computational mesh. This paper describes recent work aimed at developing a mesh generator which can reliably produce meshes for geometries of essentially arbitrary complexity in an automated manner and fast enough to keep up with the pace of an engineering development program. Our goal is to be able to script the mesh generation within an automated workflow - and forget it.
2014-01-15
Journal Article
2013-01-9095
Lindita Prendi, Allan King, Edwin Tam
Environmental concerns and rising fuel costs are driving Ontario's municipalities and fleet operators to consider alternative vehicle technologies. Elevated fuel consumption and air emissions are attributed to the unique operations of fleet vehicles and in particular, during idling. While drivers of passenger vehicles may have the option of simply not idling, fleet and emergency vehicle operators, may need to keep the vehicle operating to supply power to critical onboard equipment. These demands may be exacerbated during seasonal, temperature extremes. However, prolonged idling can impose significant environmental and economic burdens. Hybrid vehicles have yet to be utilized widely by Ontario's fleets, but there are other approaches to reduce emissions, including alternative “green” technologies to operate in-vehicle equipment and maintain fleet vehicle capabilities instead of idling.
2004-11-02
Technical Paper
2004-01-3089
Lionel D. Alford, Aaron Altman
The typical aeronautical engineering approach to low Reynolds number flight studies has been to start with known high Reynolds number aerodynamic paradigms and attempt to match them by scaling to observations of birds and insects. On the other hand, the typical biological approach to natural flight aerodynamics has been to try to fit the observations of birds and insects into the typical known aerodynamic paradigms. Neither of these approaches has met with much success, and although we know more about the potential processes of natural flight, we have not been able to describe them using the framework of conventional aerodynamics. The investigation of low Reynolds number aerodynamic flows at the University of Dayton has led to a proposed new method of characterizing and describing the aerodynamics of natural flight. Lift in natural flight is theorized to be based in the spanwise flow along the curvature of a flapping wing.
2004-11-02
Technical Paper
2004-01-3088
J. Philip Barnes
The flight mechanics of dynamic soaring are described to explain how the albatross can sustain soaring flight over a waveless sea in any net direction, including upwind, by extracting energy from the wind velocity gradient with cyclic zoom maneuvers. A dynamic soaring force is postulated to be represented by a wind-aligned vector providing energy gain during both upwind ascent and downwind descent in the wind profile. Maneuver angles are specified consistent with both a dynamic soaring rule and the desired net progress over the water. The equations of motion for coordinated maneuvering in the wind profile are derived and numerically integrated for a range of trajectories as perceived by the albatross, and also as perceived by a stationary observer.
2004-11-02
Technical Paper
2004-01-3092
Zenovy S. Wowczuk, Kenneth H. Means, Victor H. Mucino, Gregory J. Thompson, James Smith, Jeffery R.X Auld, James E. Smith, Adam Naternicola, Lawrence Anthony Feragotti, Bruce J. Corso
The development of a standardized roll-on, roll-off (RoRo) sensor pallet system for a C-130 aircraft was conceived by the National Guard and the Counter Narco-Terrorism Technology Development Office to assist in counterdrug reconnaissance activities within the United States and surveillance and reconnaissance missions worldwide. West Virginia University was contracted to perform the design and development of this system because of their innovative design ideas. Before development, the design parameters were established by these two DoD agencies, their mission requirements and by the limitations of the C-130 aircraft. These limitations include using Commercial off the Shelf (COTS) and Government off the Shelf (GOTS) items when developing the system that must be universal on all C-130 aircrafts variants B thru H. Further design criteria are by the limitations of the C-130 aircraft and its existing mission requirements.
2004-11-16
Technical Paper
2004-01-3315
Alexandre de Almeida Guimarães
It is clearly perceived the exponential growth of on-board electronics on several technological segments. On aerospace segment that is not different. Besides those propulsion and navigation fundamentals systems, necessary on most part of the aircrafts, many complex electronic systems are required: for the treatment of information sent by either landed equipments or other aircrafts (often found on military applications), and for comfort and entertainment systems (most related to passenger transportation applications). In any case, the amount of available and exchangeable information between these systems is fairly huge. Such data exchange would be easier performed if were made through the application of a communication protocol. This paper lists and analyses the communication protocols used by most part of the current and future aircrafts. The intention of this document is to be a study guideline of avionics related protocols.
2004-11-16
Technical Paper
2004-01-3415
Marcelo Lopes de Oliveira e Souza, Gilberto da Cunha Trivelato
In this work we discuss some types of simulation environments and laboratories, their characteristics and applications to the simulation and control of aerospace vehicles. This includes: the basic definitions, types and characteristics of simulators and simulations (physical, computational, hybrid, etc.; discrete events, discrete time, continuous time, etc; deterministic, stochastic, etc.) their basic compromise (simplicity × fidelity), their man-machine interfaces and interactions (virtual, constructive, live, etc.), their evolution law (time, events, mixed, etc.), their architectures (“stand-alone”, PIL, HIL, MIL, DIS, HLA, etc.), and especially, their environments (discrete, continuous, hybrid, etc.) and laboratories (physical, computational, hybrid, etc.), and their applications to the simulation and control of aerospace vehicles. This is illustrated by some examples driven from the aerospace industry.
2004-07-19
Technical Paper
2004-01-2317
Valter Perotto, Vincenzo Mareschi
ALTAN (ALenia Thermal ANalyser) is a tool developed in Alenia Spazio, for the thermal simulation of satellites. Distinctive features of ALTAN are the description of the system in terms of thermal objects that can be considered as high level primitives, the accurate modelling of the energy sources (planets and sun) and of the optical properties, the integration in a single tool of the steps of radiative, conductive and thermal calculations and of the post-process of the results. An example of ALTAN application is given for Bepi-Colombo mission to Mercury, in particular the modelling of the highly variable planet temperature and the directional optical properties of the planet surface.
2004-07-19
Technical Paper
2004-01-2307
Pierre Jamotton, Antonio Cucchiaro, Isabelle Domken
Both Planck and Herschel satellite are cryogenic payloads, the first one having a cold point around 0.1 [K], the second one around 0.3 [K]. Not only the detectors are cooled, but also major subsystems and systems of the spacecraft’s. The Centre Spatial de Liège (CSL) is involved in the testing of several parts of the spacecraft’s, starting from optical tests on the mirrors or on the telescopes, going on with cryogenic vibration testing of scientific focal plane instruments, ending with the full Planck spacecraft testing. Each test requires temperature lower than 20 [K], in volumes ranging from 1 [m3] to 60 [m3], cooling down several kilograms to more than one ton, and withstanding heat load up to 150 [W] in stabilization. These tests are done is 4 different facilities of CSL, linked to a common cold Helium network. This latter allows full flexibility for operation of the different facilities quasi independently.
2004-07-19
Technical Paper
2004-01-2320
Marco Molina, Paolo Vercesi
The paper presents the simulation and the performance evaluation for an innovative Temperature and Humidity Control in a manned orbiting module. Starting from the EcosimPro® modelling capabilities, a Space Station Module has been built and a standard Temperature and Humidity Control (THC) has been designed, based on a classical PID (Proportional, Integral, Derivative) controller, suitably developed. After that, a fuzzy logic controller has been dsigned and thanks to EcosimPro programmability a fuzzy logic controller block has been created. The controller have been sized and its performances suitably simulated. Performances of the innovative controller are checked against the standard control techniques.
2004-07-19
Technical Paper
2004-01-2306
A. Robson, S. Dolce, P. Ayache
MetOp is a series of three meteorology and climate monitoring satellites, which will be launched using the Russian Soyuz-Fregat vehicle over a period of 14 years starting in 2005. MetOp will form part of the American ‘Polar Orbiting Environmental Satellites’ (POES) programme, a further step in European/American collaboration in space. The MetOp satellites will fly in a sun-synchronous polar orbit at an altitude of between 800 and 850km, with a repeat cycle of 29 days. The satellite is based on the successful Spot platform, which has carried a number of European earth observation satellites over the last 15 years, and consists of two parts: 1. The Payload Module (or PLM) which carries twelve instruments, provided by the European Space Agency (ESA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the American National Oceanic and Atmospheric Administration (NOAA) and the French space agency, CNES. 2.
2004-07-19
Technical Paper
2004-01-2305
Juergen Schilke, Silvio Dolce, Elena Checa, Gaetan Piret
The METOP satellite is Europe’s polar-orbiting meteorological satellite. It balances the US provided POES (Polar Orbiting Environmental Satellite) program. 3 flight models are built under EUMETSAT/ESA contract by an industrial consortium led by Astrium. Instruments are supplied by NOAA and EUMETSAT. This paper gives a summary on the thermal testing of METOP payload module. The testing started with TB test on EM, conducted in may 2001 at ESTEC Large Space Simulator. It was followed by a TV test on the same model in June 2001. The test was split into a TB part with solar simulation and a TV part without. Between both tests a test jig carrying a set of stimuli and test equipment was installed on the PLM. In November 2002 the PLM flight model 1 was subjected to a TV test at ESTEC with additional TB phases to improve the TMM. In February 2004 PLM flight model 2 has executed also TV testing at ESTEC.
2004-04-20
Technical Paper
2004-01-1808
Mitchell P. Kaplan, Timothy A. Wolff
This paper describes some of the steps necessary to certificate a camera installation in a Part 23 aircraft. The camera is large and necessitates the severing of a major structural member (keel beam). Damage tolerance analysis is required because of the penetration of the pressure vessel. Cable rerouting is necessary because of the location of the hole. The design, the basis for the structural substantiation and the structural substantiation of this design are discussed in this paper.
Viewing 1 to 30 of 7818

Filter

  • Range:
    to:
  • Year: