Refine Your Search

Topic

Search Results

Standard

Information Guide for Electric Motors which Drive Hydraulic Pumps

2016-04-25
WIP
AIR6855
This document provides an application guide for electric motors that drive aerospace hydraulic pumps. It provides details of the characteristics of electric motors powered by DC, Fixed Frequency AC, and Variable Frequency AC electrical systems. The applications include both military and commercial aircraft.
Standard

Accumulators, Ground, Hydropneumatic Pressure

2008-07-17
HISTORICAL
ARP763
This specification covers ground type hydropneumatic pressure accumulators for use in ground support hydraulic systems at rated pressures ranging up to 5,000 psi including details pertinent to the design, fabrication, and performance of the accumulators.
Standard

Accumulators, Ground, Hydropneumatic Pressure

2012-07-11
CURRENT
ARP763A
This specification covers ground type hydropneumatic pressure accumulators for use in ground support hydraulic systems at rated pressures ranging up to 5,000 psi including details pertinent to the design, fabrication, and performance of the accumulators.
Standard

Liquid Propellant Gas Generation Systems

2013-06-17
CURRENT
AIR1343B
This information report presents a preliminary discussion of liquid propellant gas generation (LPGG) systems. A LPGG system, as used herein, is defined as a system which stores a liquid propellant and, on command, discharges and converts the liquid propellant to a gas. The LPGG system can interface with a gas-to-mechanical energy conversion device to make up an auxiliary power system. Figure 1 shows a block diagram of LPGG system components which include a propellant tank, propellant expulsion system, propellant control and a decomposition (or combustion) chamber. The purpose of this report is to provide general information on the variety of components and system arrangements which can be considered in LPGG design, summarize advantages and disadvantages of various approaches and provide basic sizing methods suitable for initial tradeoff purposes.
Standard

Liquid Propellant Gas Generation Systems

2007-11-06
HISTORICAL
AIR1343A
This information report presents a preliminary discussion of liquid propellant gas generation (LPGG) systems. A LPGG system, as used herein, is defined as a system which stores a liquid propellant and, on command, discharges and converts the liquid propellant to a gas. The LPGG system can interface with a gas-to-mechanical energy conversion device to make up an auxiliary power system. Figure 1 shows a block diagram of LPGG system components which include a propellant tank, propellant expulsion system, propellant control and a decomposition (or combustion) chamber. The purpose of this report is to provide general information on the variety of components and system arrangements which can be considered in LPGG design, summarize advantages and disadvantages of various approaches and provide basic sizing methods suitable for initial tradeoff purposes.
Standard

Aircraft Hydraulic Starter/Pumps

2013-10-28
CURRENT
AS838A
This specification established (1) the common requirements for hydraulic units capable of functioning as starters and as pumps suitable for use in aircraft and missiles and (2) the methods to be used for demonstrating compliance with these requirements.
Standard

Aircraft Hydraulic Starter/Pumps

2005-04-26
HISTORICAL
AS838
This specification established (1) the common requirements for hydraulic units capable of functioning as starters and as pumps suitable for use in aircraft and missiles and (2) the methods to be used for demonstrating compliance with these requirements.
Standard

Compressor Units, Air/Gas, General Requirements For

2008-04-09
HISTORICAL
AS26805A
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Compressor Units, Air/Gas, General Requirements For

2001-03-01
HISTORICAL
AS26805
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Compressor Units, Air/Gas, General Requirements For

2013-06-13
CURRENT
AS26805B
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Hydraulic Pump Minimum Inlet Pressure Test

2020-12-10
CURRENT
ARP6249
This SAE Aerospace Recommended Practice (ARP) contains technical information for conducting and evaluating the minimum inlet pressure capability of axial piston pumps.
Standard

Aerospace – Military Type Variable Delivery, Pressure Compensated Hydraulic Pump

2022-05-18
WIP
AS19692C
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance, and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps used in military aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS. The hydraulic pumps defined by this AS are generally for use in aircraft hydraulic systems conforming to and as defined in AS5440 and MIL-H-8891, as applicable. NOTES: 1. Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard. 2. AS595 should be used for commercial aircraft hydraulic pumps. 3. This document should not be used for hydraulic pumps in Electro-Hydrostatic Actuator applications (EHAs).
Standard

PUMPS, HYDRAULIC, VARIABLE FLOW, GENERAL SPECIFICATION FOR

1998-05-01
HISTORICAL
AS19692
This specification and a detail pump specification establish the requirements for variable flow hydraulic pumps, for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891, as applicable. The general requirements for type I and type II hydraulic systems pumps are specified in MIL-H-8775 and for type III system pumps in MIL-H-8890.
Standard

Pumps, Hydraulic, Variable Flow, General Specification For

1999-07-01
HISTORICAL
AS19692A
This specification and a detail pump specification establish the requirements for variable flow hydraulic pumps, for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891, as applicable. The general requirements for type I and type II hydraulic systems pumps are specified in MIL-H-8775 and for type III system pumps in MIL-H-8890.
Standard

Aerospace – Military Type Variable Delivery, Pressure Compensated Hydraulic Pump

2016-06-22
CURRENT
AS19692B
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance, and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps used in military aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS. The hydraulic pumps defined by this AS are generally for use in aircraft hydraulic systems conforming to and as defined in AS5440 and MIL-H-8891, as applicable.
Standard

Aerospace - Application Guide for Hydraulic Power Transfer Units

2002-07-30
HISTORICAL
ARP1280A
This SAE Aerospace Recommended Practice (ARP) is an application guide for hydraulic power transfer units, and describes the various types, typical design approaches, their operational characteristics and limitations, circuit recommendations, and a tabulation of typical applications. The scope is limited to devices that transfer power between hydraulic systems and do so by means of rotary subassemblies such as hydraulic motors and pumps.
Standard

Aerospace - Application Guide for Hydraulic Power Transfer Units

2022-05-23
WIP
ARP1280C
This SAE Aerospace Recommended Practice (ARP) is an application guide for hydraulic power transfer units and describes: The various types Typical design approaches Their operational characteristics and limitations Circuit recommendations Typical applications The scope of this ARP is limited to devices that transfer power between hydraulic systems and do so by means of rotary subassemblies such as hydraulic motors and pumps.
X