Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Journal Article

Development Testing of a High Differential Pressure (HDP) Water Electrolysis Cell Stack for the High Pressure Oxygen Generating Assembly (HPOGA)

2009-07-12
2009-01-2346
The International Space Station (ISS) requires advanced life support to continue its mission as a permanently-manned space laboratory and to reduce logistic resupply requirements as the Space Shuttle retires from service. Additionally, as humans reach to explore the moon and Mars, advanced vehicles and extraterrestrial bases will rely on life support systems that feature in-situ resource utilization to minimize launch weight and enhance mission capability. An obvious goal is the development of advanced systems that meet the requirements of both mission scenarios to reduce development costs by deploying common modules. A high pressure oxygen generating assembly (HPOGA) utilizing a high differential pressure (HDP) water electrolysis cell stack can provide a recharge capability for the high pressure oxygen storage tanks on-board the ISS independently of the Space Shuttle as well as offer a pathway for advanced life support equipment for future manned space exploration missions.
Journal Article

Comparative Configurations for Lunar Lander Habitation Volumes: 2005-2008

2009-07-12
2009-01-2366
This paper presents an overview of the progression of the contemplated candidate volumes for the Lunar Lander since the beginning of the Vision for Space Exploration in 2004. These sets of data encompass the 2005 Exploration Systems Architecture Study (ESAS), the 2006 Request for Information on the Constellation Lunar Lander, the 2007 Lander Design Analysis Cycle −1 (LDAC-1) and the 2008 Lunar Lander Development Study (LLDS). This data derives from Northrop Grumman Corporation analyses and design research. A key focus of this investigation is how well the lunar lander supports crew productivity.
Journal Article

Testing of a Plastic Melt Waste Compactor Designed for Human Space Exploration Missions

2009-07-12
2009-01-2363
Significant progress has been made at NASA Ames Research Center in the development of a heat melt compaction device called the Plastic Melt Waste Compactor (PMWC). The PMWC was designed to process wet and dry wastes generated on human space exploration missions. The wastes have a plastic content typically greater than twenty percent. The PMWC removes the water from the waste, reduces the volume, and encapsulates it by melting the plastic constituent of the waste. The PMWC is capable of large volume reductions. The final product is compacted waste disk that is easy to manage and requires minimal crew handling. This paper describes the results of tests conducted using the PMWC with a wet and dry waste composite that was representative of the waste types expected to be encountered on long duration human space exploration missions.
Journal Article

Thermal Considerations for Meeting 20°C and Stringent Temperature Gradient Requirements of IXO SXT Mirror Modules

2009-07-12
2009-01-2391
The Soft X-Ray Telescope (SXT) is an instrument on the International X-Ray Observatory (IXO). Its flight mirror assembly (FMA) has a single mirror configuration that includes a 3.3 m diameter and 0.93 m tall mirror assembly. It consists of 24 outer modules, 24 middle modules and 12 inner modules. Each module includes more than 200 mirror segments. There are a total of nearly 14, 000 mirror segments. The operating temperature requirement of the SXT FMA is 20°C. The spatial temperature gradient requirement between the FMA modules is ±1°C or smaller. The spatial temperature gradient requirement within a module is ±0.5°C. This paper presents thermal design considerations to meet these stringent thermal requirements.
Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Journal Article

Sustained Salad Crop Production Requirements for Lunar Surface

2009-07-12
2009-01-2381
A long-duration lunar outpost will rely entirely upon imported or preserved foods to sustain the crew during early Lunar missions. Fresh, perishable foods (e.g. salad crops) would be consumed by the crew soon after delivery by the re-supply missions, and can provide a supplement to the diet rich in antioxidants (bioprotectants) that would serve as a countermeasure to radiation exposure. Although controlled environment research has been carried out on the growth of salad crops under a range of environmental conditions, there has been no demonstration of sustainable production in a flight-like system under conditions that might be encountered in space. Several fundamental challenges that must be overcome in order to achieve sustained salad crop production under the power, volume and mass constraints of early Lunar outposts include; growing multiple species, sustaining productivity through multiple plantings, and minimizing time for crew operations.
Journal Article

Data Abstraction Architecture for Monitoring and Control of Lunar Habitats

2009-07-12
2009-01-2465
A Lunar habitat will be highly sensored and generate large amounts of data or telemetry. For this data to be useful to humans monitoring these systems and to automated algorithms controlling these systems it will need to be converted into more abstract data. This abstracted data will reflect the trends, states and characteristics of the systems and their environments. Currently this data abstraction process is manual and ad hoc. We are developing a Data Abstraction Architecture (DAA) that allows engineers to design software processes that iteratively convert habitat data into higher and higher levels of abstraction. The DAA is a series of mathematical or logical transformations of telemetry data to provide appropriate inputs from a hardware system to a hardware system controller, system engineer, or crew. The DAA also formalizes the relationships between data and control and the relationships between the data themselves.
Journal Article

Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2008/2009

2009-07-12
2009-01-2445
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
Journal Article

Oxygen Production via Carbothermal Reduction of Lunar Regolith

2009-07-12
2009-01-2442
The Moon is composed of a variety of oxygen-bearing minerals, providing a virtually unlimited quantity of raw material that can be processed to produce oxygen. One attractive method to extract oxygen from the lunar regolith is the carbothermal reduction process. This paper discusses recent development work conducted through the PILOT project under the NASA OPTIMA program. The OPTIMA test program utilizes a modular technology suite of ISRU excavation, oxygen extraction, oxygen storage, and oxygen distribution hardware sized to be consistent with the draft Constellation requirements for oxygen extraction from the regolith to support the early lunar outpost (1 MT O2/year).
Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

DRESS: Distributed and Redundant Electro-mechanical Nose Wheel Steering System

2009-11-10
2009-01-3110
Scope of the DRESS project is to research, develop and validate a distributed and redundant electrical steering system technology for an aircraft nose landing gear. The new system aims to: • reduce system weight at aircraft level, replacing the current hydraulic actuation system with an electric one. • improve aircraft safety, achieving higher system redundancy levels compared to the current technology capabilities. This paper presents an outline of different activities occurring in the DRESS project and also shows preliminary results of the new system performance.
Journal Article

Improved Accuracy of Unguided Articulated Robots

2009-11-10
2009-01-3108
The effectiveness of serial link articulated robots in aerospace drilling and fastening is largely limited by positional accuracy. Unguided production robotic systems are practically limited to +/-0.5mm, whereas the majority of aerospace applications call for tolerances in the +/-0.25mm range. The precision with which holes are placed on an aircraft structure is affected by two main criteria; the volumetric accuracy of the positioner, and how the system is affected when an external load is applied. Production use and testing of off-the-shelf robots has highlighted the major contributor to reduced stiffness and accuracy as being error ahead of the joint position feedback such as backlash and belt stretch. These factors affect the omni-directional repeatability, thus limiting accuracy, and also contribute to deflection of the tool point when process forces are applied.
Journal Article

Compact Fixturing Based on Magneto-rheological Fluids for Aeronautic Stringers Milling

2009-11-10
2009-01-3132
The paper explains the compact fixturing based on magneto-rheological (MR) fluids that have been designed and validated for aeronautic stringers milling. The MR fluid based tooling developed is flexible and reconfigurable as it can be adapted to different profile's lengths and sections and it is able to fix compliant workpieces without reference faces as the MR fluid adapts to the outer shape of each profile. The MR fluid based tooling is suitable to hold non-magnetic materials such as aluminum and also materials that do not admit high clamping forces, such as titanium, because they will appear as deformation after machining due to the memory effect of titanium. The MR fluid based tooling has been tested in a machine environment under real machining conditions and promising results have been obtained.
Journal Article

Tool Wear Compensation

2009-11-10
2009-01-3216
This paper describes the principles of a new method to compensate for tool wear when drilling in complex materials such as Carbon Fibre Reinforced Plastics (CFRP), Carbon Fibre Reinforced Plastics / Titanium (CFRP/Ti) and Carbon Fibre Reinforced Plastics / Alloy (CFRP/AI) stacks. A reliable and repeatable hole quality is essential, especially in automatic drilling applications with robots or gantries. The method combines the unique feature to dynamically adjust the drilling diameter in very small steps in an Orbital drilling End-effector and a new type of software algorithm to predict and compensate for the tool wear in different materials. With this method a large number of holes can be drilled without changing the cutting tool, and a Cpk value of more than 2,5 can be achieved.
Journal Article

Assembly Simulation of Riveting Process

2009-11-10
2009-01-3215
The presented paper introduces the new software complex aimed at simulation of the riveting process as applied to aircraft parts. The software complex implements the novel mathematical model based on minimization of the potential energy. The paper gives the detailed description of the mathematical model and particularizes the main features of the software. The physical and numerical tests aimed at validation of the software are also described in the paper.
Journal Article

Solution for Automated Drilling and Lockbolt Installation in Carbon Fiber Structures

2009-11-10
2009-01-3214
Manual drilling and Lockbolt installation in carbon fiber structures is a labor intensive process. To reduce man hour requirements while concurrently improving throughput and process quality levels BROETJE-Automation developed a gantry positioning system with high performance multi-function end effectors for this application. This paper presents a unique solution featuring fully automated drilling and Lockbolt installation (inclusive of automated collar installation) for the vertical tail plane (vertical stabilizer) of large commercial aircraft. A flexible and reconfigurable assembly jig facilitates high access of the end effectors and increases the equipment efficiency. The described system fulfils the demand for affordable yet flexible precision manufacturing with the capacity to handle different aircraft model panels within the work envelope.
Journal Article

Highly Flexible Automated Manufacturing of Composite Structures Consisting of Limp Carbon Fibre Textiles

2009-11-10
2009-01-3213
Due to the conventional autoclaving of pre-impregnated materials causes high costs in the production of carbon fibre structures, new injection methods have become more and more relevant. The research project “CFK-Tex” focuses on the automated handling and processing of preforms out of dry carbon fibre textiles. Regarding the advantages in quality improvement and process time, an automation of all process steps is getting enforced. The major challenge, in addition to the difficult handling-properties of the materials and high quality demands, is the enormous variety of outline variants caused by small production quantities but many different textile cuts per part. In the first step the requirements of an automated system are exactly analyzed considering the specific material properties as well as process and product based characteristics.
Journal Article

The Effect of Machining–Induced Micro Texture on Lightning Current Arcing between Fasteners and Composite Structure

2009-11-10
2009-01-3240
Drilling fastener holes in composite is much more difficult than in aluminum or other metallic materials since individual carbon fibers fracture at irregular angles resulting in numerous microscopic voids. These voids can trap excess sealant inhibiting the intimate electrical contact between the fastener and the composite structure. As the cutting tool wears there is an increase of surface chipping and an increase in the amount of uncut fibers or resin. This condition is referred to as machining–induced micro texture. Machining–induced micro texture has been shown to be associated with the presence of arcing between the fastener and the composite structure during lightning strike tests. Lightning protection of composite structure is more complex due to the intrinsic high resistance of carbon fibers and epoxy, the multi-layer construction and the anisotropic nature of the structure.
Journal Article

The Potential for Fibre Alignment in the Manufacture of Polymer Composites from Recycled Carbon Fibre

2009-11-10
2009-01-3237
This paper studies the feasibility and potential benefits of aligning recycled carbon fibres, in the form of short individual filaments, to manufacture fibre reinforced polymer composites. A review of fibre alignment processes is presented to provide insight into the different alignment technologies. The main focus is on wet hydrodynamic processes, which offer a high degree of alignment for discontinuous fibres. The process parameters that govern the alignment efficiency are also reported. The effect of alignment on fibre packing efficiency in the manufacture of composites is included, together with a report of preliminary fibre alignment results obtained from three different alignment processes.
X