Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

VOLTEC Battery System for Electric Vehicle with Extended Range

2011-04-12
2011-01-1373
Mid 2006 a study group at General Motors developed the concept for the electric vehicle with extended range (EREV),. The electric propulsion system should receive the electrical energy from a rechargeable energy storage system (RESS) and/or an auxiliary power unit (APU) which could either be a hydrogen fuel cell or an internal combustion engine (ICE) driven generator. The study result was the Chevrolet VOLT concept car in the North American Auto Show in Detroit in 2007. The paper describes the requirements, concepts, development and the performance of the battery used as RESS for the ICE type VOLTEC propulsion system version of the Chevrolet Volt. The key requirement for the RESS is to provide energy to drive an electric vehicle with “no compromised performance” for 40 miles. Extended Range Mode allows for this experience to continue beyond 40 miles.
Journal Article

Analysis of Fuel Cell Vehicles Equipped with Compressed Hydrogen Storage Systems from a Road Accident Safety Perspective

2011-04-12
2011-01-0545
The potential impact of real world accident scenarios on fuel cell vehicles equipped with a compressed hydrogen storage system is analyzed from a component point of view. Even though hydrogen compressed gas tanks can sustain very high loads, in this study a simplification is made. It is investigated to what extent different real world accident scenarios with conventional vehicles have caused deformation of the vehicle in the area where a hydrogen tank would have been integrated in a fuel cell vehicle. The study is based on accident data from the GIDAS (German In-Depth Accident Study) database. Deformation matrices for each passenger car in the database are defined over a deformation grid largely independent of vehicle type and shape. The matrices are combined to statistically analyze the occurrence of deformations in selected regions of a vehicle.
Technical Paper

Crash Modeling of High-Pressure Wet Wound Composite Vessels

2011-04-12
2011-01-0016
Limitations of fossil fuels and concerns surrounding global warming favor the introduction of new powertrain concepts with higher efficiency and low greenhouse gas emissions. Fuel cell vehicles offer the highest potential for sustainable mobility in the future. One major component of fuel cell vehicles is the hydrogen storage system. The most-used approach is to store hydrogen in carbon-fiber-reinforced plastic (CFRP) vessels manufactured by a filament-winding process with an operating pressure up to 70 MPa (hereafter referred as H₂ vessel). Accurate and reliable failure prediction of such thick composite structures with numerical methods in case of impact events is important. The objective of this paper is the evaluation of the commercial fiber-reinforced plastics material model MAT162 in LS-DYNA to describe both the onset and the progression of damage of the H₂ vessel. MAT162 has the capability of modeling progressive damage of composites.
Technical Paper

Anti-Roll Bar Link Toggling: Investigation and Optimization of a Robustness Problem

2011-04-12
2011-01-0063
Because of package constraints the anti-roll bar link (ARB-link) of a rear axle stabilizer had to be designed with a very short length. When the rear suspension is in extreme opposite wheel travel conditions - as it happens when driving on parking garage ramps - this design results in a toggling effect of the ARB-link. The toggling starting point depends strongly on the location of the upper and lower attachment point of the ARB-link. Therefore, a nominal optimization based on MB S simulations of the critical ramp driving load case is applied to find within the given package space an optimized position of the attachment points, where no toggling occurs. Indeed, such attachment points can be found, but a robustness analysis reveals that the nominal optimum is located at a bifurcation edge and that - consequently - the result is not robust.
Journal Article

Development and Validation of a Numerical Thermal Simulation Model for Compressed Hydrogen Gas Storage Tanks

2011-04-12
2011-01-1342
The fueling of hydrogen vehicles in three minutes enabling ranges above 500 km offers a significant advantage over other types of electric powertrain vehicles. SAE J2601, published in 2010, offers the first and only worldwide guideline to standardize fueling methodology. Due to the properties of hydrogen and compressed storage, each type and geometry tank heats up differently. Therefore, a hydrogen fueling methodology needs to take into account the range of storage anticipated from all automakers. This paper will describe a simulation tool developed in order to be able to assist in the development of a fueling procedure for General Motors Company; SAE J2601 team and the validation thereof. A reduced numerical simulation model has been developed that simulates the thermal response of a compressed gas storage tank operated under transient conditions.
X