Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Estimating Ozone Potential of Pipe-out Emissions from Euro-3 to Euro-5 Passenger Cars Fueled with Gasoline, Alcohol-Gasoline, Methanol and Compressed Natural Gas

2016-04-05
2016-01-1009
Along with the booming expansion of private car preservation, many Chinese cities are now struggling with hazy weather and ground-level ozone contamination. Although central government has stepped up efforts to purify skies above China, counter-strategies to curb ground-level ozone is comparatively weak. By using maximum incremental reactivity (MIR) method, this paper estimated the ozone forming potential for twenty-five Euro-3 to Euro-5 passenger cars burning conventional gasoline, methanol-gasoline, ethanol-gasoline, neat methanol and compressed natural gas (CNG). The results showed that, for all the fuel tested, VOC/NOx ratios and SR values decreased with the upgrading of emission standard. Except for Euro-3 M100 and Euro-4 M85, SR values for alternative fuel were to different degrees smaller than those for gasoline. When the emission standard was shifted from Euro-4 to Euro-5, OFP values estimated for gasoline vehicle decreased.
Technical Paper

The Application of Solid Selective Catalytic Reduction on Heavy-Duty Diesel Engine

2017-10-08
2017-01-2364
Urea SCR technology is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea SCR process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and reduces NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12°C. For preventing deposits formation, aqueous urea solution is hardly injected into exhaust gas stream at temperature below 200°C. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions. This paper presents a solid SCR technology for control NOx emissions from heavy duty diesel engines.
X