Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Overview of On-Board Diagnostic Systems Used on 1991 California Vehicles

1991-10-01
912433
The California Air Resources Board requires that new California vehicles be equipped with on-board diagnostic (OBD) systems. Starting with the 1988 models, these systems were required on new passenger cars, light-duty trucks and medium-duty vehicles equipped with three-way catalysts and feed-back fuel controls. The purpose of the OBD system is to expedite the proper repair of emission-related malfunctions and, thus, reduce vehicle emissions. When malfunctons are detected, a malfunction indicator light (MIL) mounted in the dash panel illuminates cautioning the vehicle operator that a repair is needed. Also, a fault code is stored in the OBD computer memory. When the vehicle is brought to a repair facility, the fault code provides the mechanic with the likely areas of malfunction for repairing the vehicle. After the repair is performed, the fault code is cleared, the MIL is extinguished, and the OBD system will subsequently confirm if the proper repair has been performed.
Technical Paper

Evaluation of Durable Emission Controls for Large Nonroad SI Engines

2002-05-06
2002-01-1752
The Environmental Protection Agency (EPA) is developing emission standards for nonroad spark-ignition engines rated over 19 kW. Existing emission standards adopted by the California Air Resources Board for these engines were derived from emission testing with new engines, with an approximate adjustment applied to take deterioration into account. This paper describes subsequent testing with two LPG-fueled engines that had accumulated several thousand hours of operation with closed-loop control and three-way catalysts. These engines were removed from forklift trucks for characterization and optimization of emission levels. Emissions were measured over a wide range of steady-state points and several transient duty cycles. Optimized emission levels from the aged systems were generally below 1.5 g/hp-hr THC+NOx and 10 g/hp-hr CO.
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

1992-02-01
920092
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
Technical Paper

Evaluation of an Enhanced Constant Volume Sampling System and a Bag Mini Diluter for Near Zero Exhaust Emission Testing

2005-04-11
2005-01-0684
As automotive exhaust emission standards have become more stringent and emission control technologies have advanced over the years, accurately measuring the resulting near zero emissions has become increasingly difficult. To improve measurement accuracy, enhancements have been made to the conventional Constant Volume Sampling system (CVS) and to the analytical instrumentation This study included the evaluation of a CVS enhancement. Specifically, a prototype air filter was utilized to enhance the performance of a CVS by reducing non-methane hydrocarbons (NMHC) from dilution air at ambient temperature. Also incorporated into this study was the assessment of a Bag Mini-Dilute (BMD), a relatively new sampling system developed for measuring low-level vehicle emissions. The BMD can be used as an alternative to the CVS and has been approved for emission measurement by the United States Environmental Protection Agency (US EPA) and the California Air Resources Board (ARB.)
Technical Paper

Durability of Low-Emissions Small Off-Road Engines

2004-09-27
2004-32-0058
The goal of the project was to reduce tailpipe-out hydrocarbon (HC) plus oxides of nitrogen (NOx) emissions to 50 percent or less of the current California Air Resources Board (CARB) useful life standard of 12 g/hp-hr for Class I engines, or 9 g/hp-hr for Class II engines. Low-emission engines were developed using three-way catalytic converters, passive secondary-air induction (SAI) systems, and in two cases, enleanment. Catalysts were integrated into the engine's mufflers, where feasible, to maintain a compact package. Due to the thermal sensitivity of these engines, carburetor calibrations were left unchanged in four of the six engines, at the stock rich settings. To enable HC oxidation under such rich conditions, a simple passive supplemental air injection system was developed. This system was then tuned to achieve the desired HC+NOx reduction.
Technical Paper

The California Vehicle Emission Control Program — Past, Present and Future

1981-10-01
811232
Programs to control motor vehicle emissions originated in California as a result of Professor A.J. Haagen-Smit of the California Institute of Technology discovering that two invisible automobile emissions, hydrocarbons and oxides of nitrogen, react together in the presence of sunlight to form oxidants such as ozone, a principal ingredient of the infamous Los Angeles area “smog”. The State of California became the first government to regulate the emissions of new automobiles when it adopted requirements for the use of positive crankcase ventilation (PCV) valves beginning with the 1963 model year.
Technical Paper

Field Test of an Exhaust Gas Recirculation System for the Control of Automotive Oxides of Nitrogen

1972-02-01
720511
The California Air Resources Board conducted an extensive field test program to evaluate a vehicle exhaust recirculation system for control of oxides of nitrogen. The system utilized hot exhaust gases from the crossover and included certain modifications to the carburetion, choke, and crank case ventilation system. It was tested on two fleets of automobiles equipped wtih California approved HC and CO emission control devices. The test program involved periodic measurements of exhaust emissions and fuel consumption. The effect of the system on vehicle drivability, engine deposits, wear, and oil deterioration was also studied. The Atlantic Richfield Company, under contract to the Air Resources Board, equipped the vehicles with the recirculation system and performed the final engine inspection.
Technical Paper

Vehicle Misfueling in California

1984-10-01
841355
There have been a half dozen surveys performed by the California Air Resources Board in California from December, 1977 to July, 1982 to determine the rate of vehicle misfueling in California. There has been great concern raised over misfueling which leads to the poisoning of catalysts and the subsequent increases in emissions of hydrocarbons, carbon monoxide and oxides of nitrogen. The results of observing refueling at service stations indicate a misfueling rate of about 2% which is much lower than what the U. S. Environmental Protection Agency figures indicate. Misfueling at self-serve stations is more than twice that noted at full-serve stations. The primary reasons given by motorists for misfueling are cheaper price of unleaded gasoline, performance (including pinging) and unavailability of unleaded fuel. Misfueling was accomplished primarily as a result of a modified restrictor or filler neck.
Technical Paper

Trends in Emissions Control Technologies for 1983-1987 Model-Year California-Certified Light-Duty Vehicles

1987-11-01
872164
An analysis of data provided by-vehicle manufacturers during the California emissions certification process has been performed for 1983-1987 model-year light-duty vehicles. The major change in emission control system design was a decrease in the use of secondary air injection which was used on 75% of 1983 vehicles, but only 50% of 1986 and 1987 vehicles. Exhaust gas recirculation was used on 90% of vehicles from 1983-1987. The sales-weighted certification emission levels of gasoline-powered light-duty vehicles were 0.23 g/mile HC, 3.1 g/mile CO, and 0.5 g/mile NOx in 1983. Levels of HC and CO were approximately constant at 0.20 g/mile and 2.7 g/mile, respectively, from 1984-1987 with NOx levels decreasing to 0.4 g/mile for 1987.
Technical Paper

Three-Way Catalyst Technology for Off-Road Equipment Engines

1999-09-28
1999-01-3283
A project was conducted by Southwest Research Institute on behalf of the California Air Resources Board and the South Coast Air Quality Management District to demonstrate the technical feasibility of utilizing closed-loop three-way catalyst technology in off-road equipment applications. Five representative engines were selected, and baseline emission-tested using both gasoline and LPG. Emission reduction systems, employing three-way catalyst technology with electronic fuel control, were designed and installed on two of the engines. The engines were then installed in a fork lift and a pump system, and limited durability testing was performed. Results showed that low emission levels, easily meeting CARB's newly adopted large spark-ignited engine emission standards, could be achieved.
Technical Paper

Development of Low-Emissions Small Off-Road Engines

1999-09-28
1999-01-3302
The purpose of this project was to modify existing small off-road engines to meet ARB's originally proposed 1999 emissions standards. A particular point was to show that compliance could be attained without the need to redesign the base engines. Four high-sales volume, ARB-certified 1997 model engines were selected from the following categories: 1) handheld two-stroke engine, 2) handheld four-stroke engine, 3) non-handheld side-valve engine, and 4) a non-handheld overhead-valve engine. Engines were selected, procured, and baseline emission tested using applicable ARB test procedures. Appropriate emission control strategies were then selected and applied to the four engines. Emission reduction strategies used included air/fuel ratio optimization, and catalytic aftertreatment. Following the development of the four emission-controlled engines, final, certification-quality emissions tests were performed. All four engines met ARB's original 1999 Tier 2 emission standards after development.
X