Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development and Validation of Logic Threshold Control Algorithm for Parallel Hybrid Power Train

2003-06-23
2003-01-2312
Logic threshold control algorithm for parallel hybrid electric power train is presented systematically, in which engine operation points are limited within higher efficient area by logic threshold control algorithm targeting fuel economy. The off-line simulation model of parallel HEV power train is developed which includes sub-models of logic threshold control system and controlled objective (such as engine, electric motor, battery pack and so on). The debug and validation of logic threshold control algorithm is completed on developed modular test facility. The results show that the simple and practical logic threshold control algorithm can effectively limited engine operation points and much more fuel economy can be achieved than that of conventional ICE power train.
Technical Paper

Development and Validation of Control Algorithm for Series Hybrid Power Train

2003-10-27
2003-01-3281
Developed control algorithm for series hybrid electric power train is presented systematically, which keeps engine operation points on the locus of highest efficiency torque/speed points using a lookup table defined by engine power and speed. The off-line simulation model of series hybrid power train is developed which includes sub-models of control system and controlled objective (such as engine, motor, battery pack and so on). The debug and validation of control algorithm is performed on developed modular test facility. The results show that developed control algorithm can effectively keep engine operating on the locus of high efficiency points and much more fuel economy can be achieved than that of conventional ICE power train, meanwhile battery SOC can be maintained within reasonable level without charging outside during cycles.
Technical Paper

Study on Control Algorithm and Parametric Design of Full Cell Hybrid Transit Bus

2003-03-03
2003-01-1139
In this paper, the series configuration of fuel cell hybrid transit bus is introduced. The control strategy and control algorithm is presented, in which to achieve higher fuel economy fuel cell pack can be modified by battery SOC within high efficient area and battery SOC can be maintained at reasonable level. Method and assessment criteria of parametric design are presented, by which appropriate parameters of fuel cell, motor, transmission are determined. The simulation results show that, with developed control algorithm and parametric design comparable power performance and much higher fuel economy can be achieved than that of baseline bus. Based on these results the concept design of fuel cell hybrid transit bus had been accomplished and development of prototype is now conducing.
Technical Paper

Development and Validation of New Control Strategy of Hybrid Power Train with ISG for Family Sedan

2006-10-16
2006-01-3291
A new control strategy for parallel hybrid electric vehicle with ISG is presented in this paper, in which engine operation points are limited within higher efficiency area by the control strategy and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. The control strategy aims to reduce total energy consumption at each instantaneous time interval by dynamically adjusting the amount of power supplied by the engine and the pack of the batteries. The off-line simulation model of the parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control stragegy can effectively limit engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
X