Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Airbag Sensor System Evaluation Methods

1998-09-29
982357
This paper presents testing methodologies used for the evaluation of airbag sensor systems. The methods are geared towards the analysis of airbag deployment/non-deployment situations through the use of harsh and abusive tests that include both driving and stationary impact conditions. Readers of the paper will gain a broad understanding of the testing options that are available to develop suitable airbag sensor systems and deployment algorithms. The methodologies presented in this paper address only the issue of preventing deployment in certain environments. The vehicle conditions are critical when developing the threshold of the deployment algorithm. The Rough Road and Abuse tests are an important part of developing this algorithm. With airbag deployment threshold levels being such an important issue in the safety field, the test methods used to simulate real world conditions become an integral aspect to overall airbag development.
Technical Paper

Advancements in Testing Methodologies in Response to the FMVSS 201U Requirements for Curtain-Type Side Airbags

2001-03-05
2001-01-0470
Vehicle manufacturers are developing dynamically deploying upper interior head protection systems to provide added occupant protection in lateral crashes. These devices are used to protect the head and neck areas and to prevent ejection from the vehicle. The National Highway Traffic Safety Administration (NHTSA) has established requirements in Federal Motor Vehicle Safety Standard (FMVSS) 201 [1] for these systems. This paper will discuss testing methodologies in the areas of component testing of curtain-type side airbag systems and full scale side impact testing of a vehicle into a rigid pole. These testing methodologies have been created as a direct result of the development phase of several airbag systems. Prior to pole impact testing, tests have been developed which evaluate these types of systems for characteristics such as inflation time, fill capacity, and how long the system stays inflated during side impact and rollover simulations.
Technical Paper

Vehicle Seating-An Overview of How Advanced Airbag Regulations Will Effect Non-FMVSS Test Procedures

2001-03-05
2001-01-0116
Recently, the National Highway Traffic Safety Administration (NHTSA) revised the Final Rule for Federal Motor Vehicle Safety Standard (FMVSS 208) - Occupant Crash Protection [1]. This rule, which will first take effect during the 2004 model year, specifies a number of new compliance test requirements that advanced frontal protection airbags will have to meet. The goal of the new standard is to reduce the risk of serious airbag induced injuries, particularly for small women and young children, and provide improved frontal crash protection for all occupants. In response to this new rule, vehicles in the future will have electronic sensors located in the seat and other advanced sensor systems. These sensors will be designed to measure critical data, such as occupant weight and size, which will be used to control the airbag. The reliability of the sensors through the entire life of a vehicle is critical to its overall safety characteristics.
Technical Paper

Advancements in Equipment and Testing Methodologies for Airbag Systems in Response to Changes to Federal Safety Requirements

2003-03-03
2003-01-0497
As a result of changing safety regulations, airbag manufacturers and automakers are continually creating and developing new types of airbag systems. These devices are used to afford protection to vehicle occupants in the event of a collision. Recently, the National Highway Traffic Safety Administration (NHTSA) established new requirements for airbags under Federal Motor Vehicle Safety Standard (FMVSS) 208 - Occupant Crash Protection [1] and FMVSS 201U - Upper Interior Head Impact Protection [2]. This paper will discuss improved testing equipment and methodologies in the areas of component and full-vehicle testing involving various types of airbags. This work has been the direct result of numerous airbag system development projects currently underway.
Technical Paper

Federal Motor Vehicle Safety Standard (FMVSS) 208 – Occupant Crash Protection: Right Front Passenger Test Methodologies

2006-04-03
2006-01-0720
Federal Motor Vehicle Safety Standard (FMVSS) 208 - Occupant Crash Protection establishes performance requirements to determine whether passenger vehicles, light multipurpose vehicles, and trucks meet conditions and injury criteria specified by the standard. On May 12, 2004, the National Highway Traffic Safety Administration (NHTSA) amended the standard to set the path for future air bag development [1, 2]. The amendment concerned the development of airbag systems that would be designed to minimize the risk of air bag induced injuries in comparison to current technologies. These new rules forward the framework for engineering of these systems without strictly regulating their design. This paper will discuss the test methodologies used from the initial design phase to the final validation phase of a vehicle. Strategies for advanced air bag system types, suppression and low risk occupant mixes, and the use of human subjects will be discussed.
Technical Paper

The Effect of Airbag Suppression Systems on Durability and Safety-Related Testing Procedures

2005-04-11
2005-01-0744
Over the last several years, designers have been working toward developing airbag suppression systems in order to satisfy the new Federal Motor Vehicle Safety Standard (FMVSS) 208 - Occupant Crash Protection requirements currently being phased-in [1, 2]. By September 1, 2005, all vehicles are required to be in compliance with the new requirements. The new rule requires that vehicles must have an airbag suppression system that turns the airbag off in cases where a child or child seat is detected in the front passenger occupant position. Typically incorporated in the seating structure or cushion area, these suppression systems are activated each time the seat is occupied. More so than any other component, this feature makes safety, durability, and reliability testing of these systems critical to their functionality. This paper will discuss how airbag suppression systems have affected the standard testing procedures of vehicle components including seats and airbags.
X