Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Approach to Vehicle Interior Control

1991-02-01
910472
In order to meet increasing demands for safety and comfort in a vehicle compartment, automatic adjustment of seat, mirrors, steering wheel has been developed. The multiplex wiring system was constructed for the automatic adjustment of the cockpit elements to drivers preferred positions or to physique-matched settings based on ergonomic data. This paper describes the construction of the multiplex system and functions of automatic adjustment of the cockpit elements for comfortable driving position and better visibility.
Technical Paper

Development of Titanium Alloy Valve Spring Retainers

1991-02-01
910428
Beta Ti alloy valve spring retainers are newly developed for use in mass produced automobiles for the first time. Ti alloy valve spring retainers vith a weight saving of 42%, compared to steel retainers, have reduced the inertial weight of the valve train components by 6%. And this weight reduction has the benefit of increasing the upper limit of the engine speed, which improves the engine performance. Ti alloy valve spring retainers are cold forged by the conventional fabrication facilities for steel retainers, using Ti-22V-4Al (the beta Ti alloy) which possesses excellent cold workability in a solution treated condition. Oxygen surface hardening is applied to protect Ti alloy valve spring retainers from wear damage. In addition, aging treatment and shot blasting are performed to improve strength and stiffness of valve retainers.
Technical Paper

Mixing Control Strategy for Engine Performance Improvement in a Gasoline Direct Injection Engine

1998-02-23
980158
Spray motion visualization, mixture strength measurement, flame spectral analyses and flame behavior observation were performed in order to elucidate the mixture preparation and the combustion processes in Mitsubishi GDI engine. The effects of in-cylinder flow called reverse tumble on the charge stratification were clarified. It preserves the mixture inside the spherical piston cavity, and extends the optimum injection timing range. Mixture strength at the spark plug and at the spark timing can be controlled by changing the injection timing. It was concluded that reverse tumble plays a significant role for extending the freedom of mixing. The characteristics of the stratified charge combustion were clarified through the flame radiation analyses. A first flame front with UV luminescence propagates rapidly and covers all over the combustion chamber at the early stage of combustion.
Technical Paper

Effect of Turbulence in Intake Port of MPI Engine on Fuel Transport Phenomena and Nonuniformity of Fuel/Air Mixing in Cylinder

1990-02-01
900162
Three zone mixture preparation model, assuming that fuel and air are distributed in three separate zones, fuel air and mixture zone, was proposed. Air Utilization Efficiency derived from the model was used to evaluate the mixing nonuniformity. Effect of the large scale nonisotropic turbulence downstream of the dimple or edge in the intake port of MPI engine on the convective mass transfer from fuel film was clarified by the proposed nondimensional index, Local Sherwood Number. It was found that when the fuel is injected toward the wall where large scale turbulence exists, almost all of the fuel is seeded in the air passing the region at the beginning of the intake process, resulting in the time-resolved nonuniformity of the mixture strength at the intake valve. Using the Air Utilization Efficiency, it was elucidated that time-resolved mixing nonuniformity at intake valves induces spatially nonuniform fuel/air distribution in the cylinder.
Technical Paper

Ceramic Tappets Cast in Aluminum Alloy for Diesel Engines

1990-02-01
900403
The authors developed, for use in diesel engines, ceramic tappets cast in aluminum alloy that drastically improved wear resistance and valve train dynamics. The ceramic tappets consist of two parts: a ceramic head, which contacts the cam and push rod, and a tappet body made of aluminum alloy. Concerning the ceramic, silicon nitride was the best material of the three ceramics evaluated in the tests and the sliding surface, in contact with the cam and push rod, was left unground. As for the aluminum alloy, hyper-eutectic aluminum-silicon alloy with a controlled pro-eutectic silicon size was selected. A reliability analysis using the finite-element method (FEM) was also made on the structure of the ceramic tappet for enhanced durability and reliability. The combination of this tappet and a cam made of hardened ductile cast iron, hardened steel, or chilled cast iron, respectively exhibits excellent wear resistance.
Technical Paper

IMEP Estimation from Instantaneous Crankshaft Torque Variation

1990-02-01
900617
Crankshaft torque fluctuation has been theoretically analyzed and possible sources of error have been reviewed in the cases of determining the indicated mean effective pressure (Pmi) from measurement of the flywheel angular-speed fluctuation. The specific objective of this study was to develop a new approach to determine Pmi from the crankshaft torque of a SI engine, and it has successfully proven that using an appropriate data processing for the angular-speed fluctuation, Pmi in low- to medium-speed ranges can be estimated with very high accuracy in terms of 99% or higher coefficient of correlation to the in-cylinder pressure sensor.
Technical Paper

Development of thermoplastic elastomeric vacuum hose for engine control

2000-06-12
2000-05-0150
Vulcanized rubber hoses are difficult to recycle and have a complicated manufacturing process. Recently, we have developed the vacuum hose for engine control out of thermoplastic elastomers. As a result of this development, scrap material from the manufacturing process can be recycled and, in addition, about a 30 percent weight reduction and a 20 percent cost reduction are achievable by virtue of the lower specific gravity and by the more simplified manufacturing process. In order to assess the feasibility of using thermoplastic elastomers for vacuum hoses, we developed a heat aging simulation test method. This was achieved by first investigating the actual vehicle environmental conditions of currently used vacuum hoses by retrieving and examining these hoses from used vehicles. We then extrapolated what the condition of such hoses would be after being subjected to heat aging for 200,000 km of service in an actual vehicle, and applied this calculation to our newly developed hoses.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 3 Airflow Velocity Distribution with Foot Mode

2010-04-12
2010-01-1065
Following the previous reports, ventilation characteristics in automobile was investigated by using a half-scale car model which was created by the Society of Automotive Engineers of Japan (JSAE). In the present study, the ventilation mode of the cabin was foot mode which was the ventilation method for using in winter season. Supplied air was blown from the supply openings under the dashboard to the rear of the model via the driver's foot region in this mode. The experiment was performed in order to obtain accurate data about the airflow properties equipped with particle image velocimetry (PIV). Our experimental data is to be shared as a standard model to assess the environment within automobiles. The data is also for use in computational fluid dynamics (CFD) benchmark tests in the development of automobile air conditioning, which enables high accuracy prediction of the interior environment of automobiles.
Technical Paper

Prediction of Occupant's Thermal Sensation under the Transient Environment in a Vehicle Compartment

2001-03-05
2001-01-0586
New numerical simulation system and experimental evaluation system has been developed to predict and evaluate occupant's thermal sensation in a passenger compartment in which environment is not steady and not uniform. Transitional effective temperature, which is new index of thermal sensation, is proposed and verified to correspond with subjects' thermal sensation votes. The simulation system has two advantage beside the prediction of thermal sensation; automatic generation of a computational model and coupling analysis of temperature including an analysis of temperature distribution inside a cabin, refrigerating cycle, solar radiation, and so on. It was verified that this system well predicts occupant's thermal sensation in a short time.
Technical Paper

Idling Stop System Coupled with Quick Start Features of Gasoline Direct Injection

2001-03-05
2001-01-0545
The gasoline direct injection engine starts significantly faster than a conventional engine. Fuel can be injected into the cylinder during the compression stroke at the same time of cranking start. When the spark plug ignites the mixture at the end of compression stroke, the engine has its first combustion, that is, the first combustion occurs within 0.2 sec after the start of cranking. This unique characteristic of quick startability has realized a idle stop system, which enables drivers to operate the vehicle in a natural manner.
Technical Paper

Feasibility Study of Two-stage Hybrid Combustion in Gasoline Direct Injection Engines

2002-03-04
2002-01-0113
Two-stage hybrid combustion for a 6-stroke gasoline direct injection SI engine is a new strategy to control the ignition of the HCCI combustion using hot-burned gas from the stratified lean SI combustion. This combustion is achieved by changing the camshafts, the cam-driven gear ratio and the engine control of a conventional 4-stroke gasoline direct injection engine without using a higher compression ratio, any fuel additives and induction air heating devices. The combustion processes are performed twice in one cycle. After the gas exchange process, the stratified ultra-lean SI combustion is performed. The hot-burned gas generated from this SI combustion is used as a trigger for the next HCCI combustion. After gasoline is injected in the burned gas, the hot and homogeneous lean mixture is recompressed without opening the exhaust valves. Thus the HCCI combustion occurs.
Technical Paper

Concept of Lean Combustion by Barrel-Stratification

1992-02-01
920678
A novel leanburn concept, ‘Barrel-Stratification’ is proposed. Fuel is introduced into the cylinder through one of the intake ports of a dual-intake-valve engine of which the tumbling air motion is intensified by the sophisticated intake port design. Because the velocity component in the direction parallel to the axis of tumble is small, charge stratification realized during the intake stroke is maintained until the end of the compression stroke. By the effects of charge stratification and the turbulence enhancement by tumble, stable combustion is realized even at extremely lean conditions. The concept was verified by flow field analysis applying a multi-color laser sheet technique and the flame structure analysis employing the blue-end image intensification realized by the interference mirror and the short delay phosphor.
Technical Paper

Effects of Various Methods for Improving Vehicle Startability and Transient Response of Turbocharged Diesel Trucks

1992-02-01
920044
To improve vehicle startability and transient response of turbocharged diesel trucks, their phenomena have been investigated and analyzed in detail and various supercharging systems have been developed and installed on a truck for comparison of their characteristics. The systems considered were ceramic, variable geometry, variable entry,and air-assisted turbochargers and a combined supercharging system. The variable entry turbocharger has two turbine scrolls with different nozzle areas and two switching valves to get three different turbine flow capacities. The combined supercharging system consists of a mechanical supercharger and a turbocharger. These are linked in series. Both work in a low engine speed range, and the turbocharger only works in middle and high engine speed ranges. Among these systems, the combined supercharging system is the best for improving both vehicle startability and transient response of a truck.
Technical Paper

A Study of Friction Reduction by ‘Soft Skirt’ Piston

2011-08-30
2011-01-2120
To reduce friction is required to improve engine fuel economy. This study aimed to reduce piston skirt friction, which is a major factor in engine friction. ‘Soft skirt’ is a trendy item in recent gasoline engines, which can improve skirt sliding condition by larger deformation when the piston is pressed to the liner. The effect is confirmed by friction measurement and oil film observation, using prototype pistons. And also one major factor of the effect is clarified that not only side force but also cylinder pressure causes effective deformation of the skirt to create thick oil film at early combustion stroke.
Technical Paper

Transient Characteristics of Torque Converter-Its Effect on Acceleration Performance of Auto-Trans. Equipped Vehicles

1990-02-01
900554
In previous studies(1)(2), the acceleration performance of vehicles equipped with torque converter has been analysed with the assumption that the converter characteristic was under continued steady-state. However, in case of sharp acceleration of the fluid flow in the converter from inactive flow condition, which would occur at wide-open throttle starting, it is not possible to accurately analyse the vehicle performance at immediately after starting if the converter characteristic is assumed to remain under steady-state condition. In this paper, the transient phenomenon in the converter is verified by applying the theory of angular momentum and the concept of energy balance through the converter elements providing with a dynamic-model for the driveline. The present study has clarified the effect of the transient converter characteristic, at sharp starting, on the acceleration performance.
Technical Paper

Prediction Method of Cooling System Performance

1993-03-01
930146
This paper describes a method of predicting cooling performance in order to obtain the optimum design of the cooling system and front-end shape in the early stage of car development. This method consists of four calculation parts: thermal load on the cooling system, air flow through the engine compartment, heat dissipation by the heat exchangers and temperature distribution within the cooling system. It outputs the coolant, engine oil, automatic transmission fluid (A.T.F.) and charge air temperatures in exchange for the input of several car, power plant, drive train, exterior shape and cooling system specifications. For the calculations, in addition to theoretical formulas, several experimental formulas are introduced. This method verification is shown by presenting a few test cases for the respective calculation parts and the final solution.
Technical Paper

Development of a New Multi-Mode Variable Valve Timing Engine

1993-03-01
930878
The 4-stroke SI engine offers better performance if its valve events can be varied depending on the operating conditions. Some engines in production are therefore incorporated with variable valve timing (VVT) mechanisms. All of such mechanisms available today however are for two-mode change-over between low-and high-speed operations. To achieve even better output and fuel economy, a new multi-mode VVT mechanism has been developed, featured by a unique hydraulic device for three-mode change-over as follows: Deactivate both intake and exhaust valves Select low-speed cam with moderate lifts and short durations Select high-speed cam with high lifts and long durations This mechanism enables shutting off unnecessary cylinders during low-speed cruise, or select optimum valve events during WOT acceleration over the entire engine speed range.
Technical Paper

Reduction of Cooling Fan Noise Caused by Crankshaft Torsional Vibration

1993-05-01
931334
Improvements of interior and exterior noise are important targets in vehicle engineering. There are many reports concerning the reduction of radiator cooling fan noise. But, most of those reports are associated with studies of air flow noise. A radiator cooling fan connected to a crankshaft occasionally radiates structure-borne noise in addition to air flow noise. This structure-borne noise is caused by fan blade vibration excited by torsional vibration of a crankshaft. In this paper, we surveyed the mechanism of the structure-borne noise and discussed some methods for the noise reduction. And, as a result, we developed one of the noise reduction technique aiming at isolation of crankshaft vibration by modifying viscosity of the oil in a fan clutch.
Technical Paper

A New Method for Analyzing Idle Shake on Front Wheel Drive Cars

1993-05-01
931323
A new method for analyzing idle shake is discussed. A primary design technique of engine mount systems and vehicle bodies in the early development stage is proposed. In general, specifications for the engine mount system, which is composed of several insulator rubbers, are determined by certain criteria of transmissibilities of engine excitation forces to the rigid foundation. However, when the transmitted forces are applied to a flexible body, the resultant response of the body depends not only on the transmissibilities of the isolation system, but on vibratory characteristics of the flexible body. Therefore, the body needs to be taken into account for antivibration design as well as the engine mount system. Besides, the engine mount and the body cannot be evaluated by simple criteria due to the several insulator rubbers which feature many transmissibilities and transfer functions.
Technical Paper

Heat Flow on Disc Brakes

1993-04-01
931084
This paper describes an experimental analysis of frictional heat generated between the pads and rotors of disc brakes, to determine the paths and amounts of heat flow. The brakes were applied repeatedly at a constant initial speed, deceleration and interval until brake temperature became saturated. Under these conditions we measured an unsteady temperature distribution state during a single application of the brakes, and also a saturated (quasi-stationary) temperature distribution during repeated braking. Heat flow was studied in six paths: heat conduction to the pad; heat convection to the air from the friction areas of the inner and outer disc, from the ventilating parts and from the tube section of the rotor; and heat conduction to the rotor flange section.
X