Refine Your Search

Topic

Author

Search Results

Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Hybrid System Development for High-Performance All Wheel Drive Vehicle

2007-04-16
2007-01-0296
The original Toyota Hybrid System (THS) was installed in the Prius and was introduced in 1997 as the world's first mass-produced hybrid passenger car. Since then, THS has been continuously improved. In 2003 THS-II (marketed as Hybrid Synergy Drive [HSD]), was installed in a new larger Prius. In 2006 HSD was installed in a Rear Wheel Drive Vehicle: the LEXUS GS450h. This system achieved both 4.5-liter class power performance and compact class fuel economy with outstanding emissions performance. In 2007, this system is expanded to a mechanical all-wheel-drive(AWD) in the LEXUS LS600hL(with new V8 engine). This paper will explain this hybrid system which achieved both V12 class power performance and mid-size class fuel economy, while meeting the most stringent emission standard SULEV as a full-size vehicle.
Technical Paper

A Study on Natural Gas Fueled Homogeneous Charge Compression Ignition Engine - Expanding the Operating Range and Combustion Mode Switching

2007-04-16
2007-01-0176
Natural gas homogeneous charge compression ignition (HCCI) engines require high compression ratios and intake air heating because of the high auto-ignition temperature of natural gas. In the first study, the natural gas fueled HCCI combustion with internal exhaust gas recirculation (EGR) was achieved without an intake air heater. The effects of the combustion chamber configuration, turbocharging, and external EGR were investigated for expanding the operating range. As a result, it was cleared that the combination of internal / external EGR and turbocharging is effective for expanding the HCCI operational range toward high loads. Meanwhile, the HCCI combustion characteristics at high engine speeds were unstable because of an insufficient reaction time for auto-ignition. Although the engine operation with a richer air-fuel ratio was effective for improving the combustion stability, the combustion noise (CN) was at an unacceptable level.
Technical Paper

A Molecular Dynamics Analysis of the Traction Fluids

2007-04-16
2007-01-1016
Non-equilibrium all-atom MD simulations are used to study the traction properties of hydrocarbon fluids. A fluid layer is confined between two solid Fe plates under the constant normal force of 1.0 GPa. Traction simulations are performed by applying a relative sliding motion to the Fe plates. Shear behaviors of nine hydrocarbon fluids are simulated on a sufficiently large film thickness of 6.7 nm, and succeeded in reproducing the order of the experimental traction coefficients. The dynamic mechanism of the momentum transfer on layers of fluid molecules are analyzed focusing on the intermolecular interactions (density profile, orientation factor, pair-correlation function) and intramolecular interactions (intramolecular interaction energy, conformation change of alicyclic ring). In contrast to the case of n-hexane, which shows low traction due to a fragile chain-like interaction, other mechanisms are obtained in the high traction molecules of cyclohexane, dicyclohexyl and santotrac 50.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 2: Effect of Branched and Ring Structures of Paraffins on Benzene and Soot Formation

1998-10-19
982495
The effect of the chemical reactivity of diesel fuel on PM formation was investigated using a flow reactor and a shock tube. Reaction products from the flow-reactor pyrolysis of the three diesel fuels used for the engine tests in Part 1(1) (“Base”, “Improved” and Swedish “Class-1”) were analyzed by gas chromatography. At 850C, Swedish “Class-1” fuel was found to produce the most PM precursors such as benzene and toluene among the three fuels, even though it contains very low amounts of aromatics. The chemical analyses described in Part 1 revealed that “Class-1” contains a large amount of branched and cyclic structures in the saturated hydrocarbon portion of the fuel. These results suggest that the presence of such branched and ring structures can increase exhaust PM emissions.
Technical Paper

An Intelligent Catalyst

2001-03-05
2001-01-1301
The catalyst of the crystalline ceramics known as a perovskite-type oxide was designed and controlled at the atomic level in order to create a new function for self-regeneration of precious metals in a usage ambience without auxiliary treatment. We have already reported that a catalyst with Pd supported on the perovskite-type oxide has higher activity than a catalyst with Pd supported on alumina. It was also found that Pd supported on the perovskite catalyst is finely dispersed [1, 2 and 3] The object of this study was to investigate the mechanism of self-regeneration by using hyper-analytical facilities. XAFS analysis, at SPring-8 (8 GeV), revealed that Pd is in six-fold coordinations with oxygen in a perovskite crystal, which indicating that Pd occupies the B site of the unit formula of ABO3 in the perovskite crystal structure under oxidation atmosphere.
Technical Paper

Universal Diesel Engine Simulator (UniDES) 2nd Report: Prediction of Engine Performance in Transient Driving Cycle Using One Dimensional Engine Model

2013-04-08
2013-01-0881
The aim of this research is to develop the diesel combustion simulation (UniDES: Universal Diesel Engine Simulator) that incorporates multiple-injection strategies and in-cylinder composition changes due to exhaust gas recirculation (EGR), and that is capable of high speed calculation. The model is based on a zero-dimensional (0D) cycle simulation, and represents a multiple-injection strategy using a multi-zone model and inhomogeneity using a probability density function (PDF) model. Therefore, the 0D cycle simulation also enables both high accuracy and high speed. This research considers application to actual development. To expand the applicability of the simulation, a model that accurately estimates nozzle sac pressure with various injection quantities and common rail pressures, a model that accounts for the effects of adjacent spray interaction, and a model that considers the NOx reduction phenomenon under high load conditions were added.
Technical Paper

Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability

2006-04-03
2006-01-0028
A concept of dual-fuel, Premixed Compression Ignition (PCI) combustion controlled by two fuels with different ignitability has been developed to achieve drastically low NOx and smoke emissions. In this system, isooctane, which was used to represent high-octane gasoline, was supplied from an intake port and diesel fuel was injected directly into an engine cylinder at early timing as ignition trigger. It was found that the ignition timing of this PCI combustion can be controlled by changing the ratio of amounts of injected two fuels and combustion proceeds very mildly by making spatial stratifications of ignitability in the cylinder even without EGR, as preventing the whole mixture from igniting simultaneously. The operable range of load, where NOx and smoke were less than 10ppm and 0.1 FSN, respectively, was extended up to 1.2MPa of IMEP using an intake air boosting system together with dual fueling.
Technical Paper

Development of High Performance Three-Way-Catalyst

2006-04-03
2006-01-1061
In conventional gasoline engine vehicles, three-way catalysts are used to simultaneously remove HC, CO and NOx from the exhaust gas. The effectiveness of the catalyst to remove these harmful species depends strongly on the oxygen concentration in the exhaust gas. Deterioration of three-way catalyst results in a reduction in its purification activity and OSC (oxygen storage capacity). In this investigation, additive elements were used to enhance the durability and OSC of the catalyst support material. An optimized formulation of a CeO2-ZrO2 and a ZrO2 material was developed to have excellent durability, improved OSC, enhanced interaction between precious metals and support materials, and increase thermal stability. Using these newly developed support materials, catalysts with increased performance was designed.
Technical Paper

Analysis of Mixture Formation Process in a Stoichiometric Direct Injection Gasoline Engine

2003-03-03
2003-01-0066
The stoichiometric direct injection gasoline engines have higher torque performance than the port injection engines, as the volumetric efficiency can be increased due to the cooling effects of charging air by the fuel evaporation in the cylinder. They need only 3-way catalyst, leading to the cost down. However there exists the injection timing (region) that increased volumetric efficiency does not lead to higher torque. In order to investigate the phenomena, the in-cylinder mixture formation process has been analyzed by the LIF and the CFD techniques. As the results, it has been revealed that the phenomena are caused by the inhomogeneous mixture distribution before the ignition timing.
Technical Paper

Fuel Effects on Particulate Emissions from D. I. Engine - Chemical Analysis and Characterization of Diesel Fuel

1995-10-01
952351
The properties of diesel fuels were investigated in terms of particulate emissions to clarify the specification of such a diesel fuel for minimizing particulate emissions. Diesel fuels were analyzed using thin layer chromatography (TLC), and gas chromatography/mass spectrometry (GC/MS). These analysis revealed the entire composition of hydrocarbons in diesel fuels according to molecular formula. The entire composition of hydrocarbons in diesel fuels could be expressd on a three-dimensional graph: the X-axis as carbon number, the Y-axis as H/C ratio and the Z-axis as the amount of hydrocarbons of identical molecular formula. By using the graph, the properties reported so far were investigated. Also, simplified images of the fuel sprayed into a cylinder and its flame were derived from the observational results previously reported.
Technical Paper

Investigation on Oxidation Stability of Engine Oils Using Laboratory Scale Simulator

1995-10-01
952528
The purposes of this paper are to develop a new laboratory oxidation stability testing method and to clarify factors relative to the viscosity increase of engine oil. Polymerized products, obtained from the oil after a JASO M333-93 engine test, were found to consist mainly of carboxyl, nitrate and nitro compounds and to increase the oil viscosity. A good similarity between the JASO M333-93 test and the laboratory simulation test was found for the polymerized products. The products were obtained not by heating oil only in air but by heating oil while supplying a synthetic blowby gas consisting of fuel pyrolysis products, NO, SO2 and air. The laboratory test has also revealed that the viscosity increase depends on oil quality, organic Fe content and hydrocarbon composition in the fuel. Moreover, it has been found that blowby gas and organic Fe accelerate ZnDTP consumption and that aromatics concentration in the fuel correlates with the viscosity increase of oil.
Technical Paper

Fuel Effects on Particulate Emissions from D.I. Engine - Relationship among Diesel Fuel, Exhaust Gas and Particulates

1997-05-01
971605
The compositions of hydrocarbons in diesel fuel, exhaust gas and particulates were analyzed and the relationships among them were determined. It was found that the compositions of the hydrocarbons in the exhaust gas were almost the same as that of the fuel, and that the hydrocarbons in the particulates corresponded to their heavy fractions. When the engine condition was fixed, both the soluble organic fraction (SOF) and insoluble fraction ( ISF) showed positive correlation coefficients versus HC×R310, where HC denotes the hydrocarbon emission and R310 denotes the backend fraction, as measured by the fraction of fuel boiling above 310°C. On the other hand, when the engine condition was varied, ISF had negative correlation coefficients versus HC×R310, while SOF showed positive correlation coefficients.
Technical Paper

Study on the Prediction of VOC Concentration in Vehicle Cabins (1) Investigation of Relationship between Toluene Concentrations and Evaluation Conditions using Interior Parts

2013-04-08
2013-01-0490
The Japan Automobile Manufacturers Association (JAMA) has recommended the voluntary regulation of the levels of volatile organic compound (VOC) emissions from vehicles. However, initiatives to reduce these emissions further are being implemented in Japan to create a healthier and more comfortable environment within vehicles. In this study, it was attempted to estimate the observable amounts of VOC emitted from products used in vehicles based on the actual emission of VOC from the products components. The VOC we focused on was toluene. The amounts of toluene volatilizing from the components of a disassembled vehicular product were measured and tested whether a simple sum of these values could be used to predict the amount of toluene emitted from the whole product. However, it was found this predicted value deviated significantly from the actual amount of toluene emitted from the product.
Technical Paper

Study on the Prediction of VOC Concentration in Vehicle Cabins (2) Development of Labeled Compound Addition Method

2013-04-08
2013-01-0491
The purpose of this study is to construct a method to predict vehicle cabin VOC (volatile organic compounds) concentration. Several methods have been used previously to evaluate VOC emission from interior parts and materials (e.g., sampling bag method, 1 m3 chamber method). However, measurement conditions vary depending on the method used, making it difficult to predict vehicle cabin VOC concentration from the VOC values evaluated for component parts. In this paper, we focused on measurement of toluene concentration using the bag method and investigated the relationship between VOC emissions and measurement conditions. We assumed that the amount of VOC contained in the parts (RA) and the adsorptive capacity of the parts (K) can describe the VOC amount obtained (RG) when the VOC concentration in the bag reaches equilibrium. We developed a novel method incorporating a labeled compound to predict RA and K.
X