Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Structural Design Technology for Brake Squeal Reduction Using Sensitivity Analysis

2010-10-10
2010-01-1691
The finite element method (FEM) is effective for analyzing brake squeal phenomena. Although FEM analysis can be used to easily obtain squeal frequencies and complex vibration modes, it is difficult to identify how to modify brake structure design or contact conditions between components. Therefore, this study deals with a practical design method using sensitivity analysis to reduce brake squeal, which is capable of optimizing both the structure of components and contact conditions. A series of analysis processes that consist of modal reduction, complex eigenvalue analysis, sensitivity analysis and optimization analysis is shown and some application results are described using disk brake systems.
Technical Paper

A New Method of Engine Sound Design for Car Interior Noise Using a Psychoacoustic Index

2004-03-08
2004-01-0406
In this study, a new practical design method (tool) for engine sound quality in a car interior is proposed. The tool can automatically create the target interior sound using the psychoacoustic index ‘powerfulness’ based on subjective tests. Moreover, it can calculate the intake noise characteristic to create the target interior sound and select the suitable intake specification from the prepared database. By using this method sound engineering can be easily and effectively carried out without manufacturing an experimental car.
Technical Paper

An Intelligent Catalyst

2001-03-05
2001-01-1301
The catalyst of the crystalline ceramics known as a perovskite-type oxide was designed and controlled at the atomic level in order to create a new function for self-regeneration of precious metals in a usage ambience without auxiliary treatment. We have already reported that a catalyst with Pd supported on the perovskite-type oxide has higher activity than a catalyst with Pd supported on alumina. It was also found that Pd supported on the perovskite catalyst is finely dispersed [1, 2 and 3] The object of this study was to investigate the mechanism of self-regeneration by using hyper-analytical facilities. XAFS analysis, at SPring-8 (8 GeV), revealed that Pd is in six-fold coordinations with oxygen in a perovskite crystal, which indicating that Pd occupies the B site of the unit formula of ABO3 in the perovskite crystal structure under oxidation atmosphere.
Technical Paper

Development of Estimation Technique for Flow Induced Vibration on External Rearview Mirror

2003-10-27
2003-01-2815
A technique has been developed that uses unsteady flow simulation to evaluate mirror vibration quantitatively at the drawing stage. Studies made in actual driving tests of the contributions of different inputs to mirror vibration have confirmed that the contribution of fluid force is large, so a visualization of the structure of the external rearview mirror wake was done using PIV. The results made it clear that the vibration imparted to the mirror surface by air flow excites the natural vibration mode of the mirror surface, thereby causing the mirror to vibrate. Mirror vibration performance was evaluated by means of unsteady flow simulation using the moment PSD as a substitute characteristic. (The moment PSD was obtained by a frequency analysis of the changes over time in the moment generated in the mirror surface by the fluid force.) The results obtained through CFD show a high degree of correlation with those obtained in actual driving tests.
Technical Paper

First Order Analysis for Automotive Body Structure Design - Part 4: Noise and Vibration Analysis Applied to a Subframe

2004-03-08
2004-01-1661
First Order Analysis (FOA) is useful for designing subunits in the mid-frequency range, as the layout and mounting positions can easily be decided at the conceptual design phase. In order to reduce vibration, we propose FOA for Noise and Vibration (NV) with the following characteristics. First, a dynamic beam element is formulated analytically using Euler's beam theory [1], so that a long uniform beam can express one element with high-order vibration. Second, power flow between potential energy and kinetic energy can be expressed as post-processing, so we can examine how to change or cut off the vibration energy path. In this paper, the above analysis is applied to a front subframe for the conceptual design of an automotive body structure.
Technical Paper

Development of High Performance Three-Way-Catalyst

2006-04-03
2006-01-1061
In conventional gasoline engine vehicles, three-way catalysts are used to simultaneously remove HC, CO and NOx from the exhaust gas. The effectiveness of the catalyst to remove these harmful species depends strongly on the oxygen concentration in the exhaust gas. Deterioration of three-way catalyst results in a reduction in its purification activity and OSC (oxygen storage capacity). In this investigation, additive elements were used to enhance the durability and OSC of the catalyst support material. An optimized formulation of a CeO2-ZrO2 and a ZrO2 material was developed to have excellent durability, improved OSC, enhanced interaction between precious metals and support materials, and increase thermal stability. Using these newly developed support materials, catalysts with increased performance was designed.
Technical Paper

Structural Vibration Analysis in Turbocharger-Exhaust Systems

1993-05-01
931318
Engine running tests and excitation tests were performed to reveal the vibration behavior in a turbocharger-exhaust system related to the turbocharger's operating sound. The operating sound was caused by the resonant vibration excited by the unbalanced inertia force of the rotor. The turbocharger-exhaust system had six resonant frequencies in the operating speed range of the rotor. At resonant speeds, the whole turbocharger was translating or rotating due to bending and torsional deflection of the exhaust manifold. Based on the test results, the vibration behavior could be well simulated by a rigid body-spring model with six degree of freedom. Furthermore, the model was used to analyze the relation between the stiffness of the exhaust manifold and the vibration level. Increasing the stiffness of the exhaust manifold was effective in sufficiently reducing the vibration and sound.
Technical Paper

Analysis of Mixture Formation Process in a Stoichiometric Direct Injection Gasoline Engine

2003-03-03
2003-01-0066
The stoichiometric direct injection gasoline engines have higher torque performance than the port injection engines, as the volumetric efficiency can be increased due to the cooling effects of charging air by the fuel evaporation in the cylinder. They need only 3-way catalyst, leading to the cost down. However there exists the injection timing (region) that increased volumetric efficiency does not lead to higher torque. In order to investigate the phenomena, the in-cylinder mixture formation process has been analyzed by the LIF and the CFD techniques. As the results, it has been revealed that the phenomena are caused by the inhomogeneous mixture distribution before the ignition timing.
Technical Paper

NOx Reduction Behavior on Catalysts With Non-Thermal Plasma in Simulated Oxidizing Exhaust Gas

2004-06-08
2004-01-1833
NOx reduction activity in an oxidizing exhaust gas was significantly improved by discharging non-thermal plasma and catalysts (plasma assisted catalysis). We investigated effective catalyst for plasma assisted catalysis in view of hydrocarbon-selective catalytic reduction(HC-SCR). Plasma assist was effective for γ-alumina and alkali or alkaline earth metals loaded zeolite and γ-alumina showed the highest NOx conversion among these catalysts. On the other hand, Plasma assist was not effective for Cu-ZSM-5 and Pt loaded catalyst. The NOx conversion for the plasma assisted γ-alumina decreased by formation of a deposit on the catalyst below 400°C. It is shown that indium loading on γ-alumina improved the NOx reduction activity and suppressed the degradation of the NOx reduction activity at 300°C with plasma assist.
Technical Paper

A New Tooth Flank Form to Reduce Transmission Error of Helical Gear

2000-03-06
2000-01-1153
Transmission error is the main cause of gear noise in automobile transmissions, and recently can be estimated by numerical analysis [1]. First, in this report, we establish the accurate numerical analysis of transmission error by using FE analysis and Hertz's contact analysis of gear tooth stiffness. Secondly, on the basis of the established numerical analysis, we develop a new tooth flank form to reduce transmission error. The new tooth flank form aims to ensure the coincidence of meshing stiffness at all meshing positions. Finally, a validation test using an experimental prototype is performed, and we confirm that the estimated effect by the new tooth flank form has been obtained.
Technical Paper

Relationship between Localized Spine Deformation and Cervical Vertebral Motions for Low Speed Rear Impacts Using Human Volunteers

1999-09-23
1999-13-0010
It is important to more clearly identify the relationship among the ramping-up motion, straightening of the whole spine, and cervical vertebrae motion in order to clarify minor neck injury mechanism. The aim of the current study is to verify the influence of the change of the spine configuration on human cervical vertebral motion and on head/neck/torso kinematics under low speed rear-end impacts. Seven healthy human volunteers participated in the experiment under the supervision of an ethics committee. Each subject sat on a seat mounted on a sled that glided backward on rails and simulated actual car impact acceleration. Impact speeds (4, 6, and 8 km/h), and seat stiffness (rigid and soft) without headrest were selected. During the experiment, the change of the spine configuration (measured by a newly developed spine deformation sensor with 33 paired set strain gauges and placed on the skin) and the interface load-pressure distribution was recorded.
Technical Paper

Objective Evaluation of Exciting Engine Sound in Passenger Compartment During Acceleration

2000-03-06
2000-01-0177
This paper describes an objective evaluation method for the engine sound quality in a car interior during acceleration. Two principal factors, pleasantness and raciness, of the engine sound quality were found with a subjective evaluation test in a laboratory. Psycho-acoustic indexes corresponding to these factors were revealed by investigating the correlation among subjective ratings and acoustic characteristics. The index of raciness was originally proposed for the assessment of sound that makes driving fun when the sound is emphasized. We propose that the design of engine sound is required with consideration of the balance between pleasantness and raciness.
Technical Paper

Evaluation of Wind Noise in Passenger Car Compartment in Consideration of Auditory Masking and Sound Localization

1999-03-01
1999-01-1125
This paper describes a new method for objective evaluation of wind noise in the passenger compartment of a car. The loudness and direction of noise in each frequency band can be estimated by performing analyses based on human hearing properties. Therefore, those wind noise components that are annoying to the passengers or those wind noise components whose source location can be determined by the human listener can be identified objectively. Furthermore, the total loudness of wind noise can be estimated quite precisely by adding the loudness of the frequency bands for noise emanating from the direction of the side window.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

2018-04-03
2018-01-0942
Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Technical Paper

Development of Three-Way Catalyst with Advanced Coating Layer

2020-04-14
2020-01-0653
Further improvements in catalyst performance are required to help protect the atmospheric environment. However, from the viewpoint of resource availability, it is also necessary to decrease the amount of precious metals used at the active sites of the catalyst. Therefore, a high-performance three-way catalyst with an advanced coating layer has been developed to lower the amount of precious metal usage. Fuel efficiency improvement technologies such as high compression ratios and a large-volume exhaust gas recirculation (EGR) generally tend to increase the ratio of hydrocarbons (HC) to nitrogen oxides (NOx) in exhaust gas. This research focused on the palladium (Pd) loading depth in the coating layer with the aim of improving the hydrocarbon (HC) conversion activity of the catalyst.
Journal Article

Numerical Simulation for Designing Next Generation TWC System with Detailed Chemistry

2008-06-23
2008-01-1540
A one-dimensional (1-D) micro-kinetic reaction model with considering mass transport inside porous washcoat was developed to promote an effective development of multi-functional catalysts. The validation of this model has been done successfully through the comparison with a set of basic experiments. A numerical simulation study was conducted for the various catalyst configurations of three-way catalysts under Federal Test Procedure (FTP75) condition. It was found that a double layer type had a significant advantage in the total mass emissions, especially in NOx emissions. The reaction mechanisms in these catalysts were numerically clarified from the view point of detailed reaction dynamics. We concluded that the utilization of the numerical simulation with the detailed chemistry was effective for the optimization of catalyst design.
X