Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design and Development of the UC Davis FutureTruck

2002-03-04
2002-01-1210
The University of California, Davis FutureTruck team redesigned a 2000 Chevrolet Suburban as a Hybrid Electric Vehicle to meet the following goals: reduce fuel cycle greenhouse gas emissions by 66%, increase vehicle fuel economy to double that of the stock Suburban, meet California's Super Ultra Low Emissions Vehicle standard, and qualify for substantial Partial Zero Emissions Vehicle credits in California. Sequoia meets these goals with an efficient powertrain, improved component systems, and an advanced control system. Sequoia utilizes two independent powertrains to provide Four-Wheel Drive and achieve stock towing capacity. The primary powertrain combines a 1.9L gasoline engine inline with a 75 kW brushless DC motor driving the rear wheels. This powertrain configuration is simple, compact, reliable, and allows flexibility in control strategy. The secondary powertrain employs a 75 kW brushless DC motor to drive the front differential.
Technical Paper

Design and Development of the 2002 UC Davis FutureTruck

2003-03-03
2003-01-1263
Yosemite is an advanced hybrid electric vehicle built on the Ford U152 Explorer platform. The University of California, Davis, FutureTruck team designed Yosemite to meet the following objectives: 1 Maximize vehicle energy efficiency 2 Minimize petroleum consumption 3 Reduce fuel cycle greenhouse gas emissions 4 Achieve California Super Ultra Low Emission Vehicle (SULEV) target 5 Deliver class-leading performance The University of California, Davis FutureTruck team redesigned a 2002 Ford Explorer as a Hybrid Electric Vehicle to meet the following goals: reduce fuel cycle greenhouse gas emissions by 67%, double the fuel economy of a stock Explorer, meet California's Super Ultra Low Emissions Vehicle standard, and qualify for substantial Partial Zero Emissions Vehicle credits in California. Yosemite meets these goals with an efficient flexible fuel hybrid powertrain, improved component systems, and an advanced control system.
Technical Paper

Hybrid Electric Vehicle Development at the University of California, Davis: The Design of Ground FX

1994-03-01
940340
The last few years have been an exciting time for alternative vehicle development. New concerns about the environmental impact of personal transportation and about the United States' dependence on imported oil have pushed energy efficient, ultra-low, and zero emissions vehicles to the forefront of automotive design. California's own mandate for Zero Emissions Vehicles (ZEV) takes effect in 1998, creating a tremendous push towards the difficult goal of producing a commercially viable, practical electric vehicle for sale in 1998. Beyond California, most of the world's automakers are simultaneously committing tremendous research and development resources towards the technology necessary for a viable electric vehicle. The University of California at Davis is one of seven California universities participating in the 1993 Ford Hybrid Electric Vehicle Challenge.
Technical Paper

Design and Development of a Parallel Hybrid Powertrain for a High Performance Sport Utility Vehicle

2005-10-24
2005-01-3827
A plug-in, charge-depleting, parallel hybrid powertrain has been developed for a high performance sport utility vehicle. Based on the Ford U152 Explorer platform, implementation of the hybrid powertrain has resulted in an efficient, high performance vehicle with a 0-60 mph acceleration time of 7.5 seconds. A dual drive system allows for four-wheel drive capability while optimizing regenerative braking and minimizing electric motor cogging losses. Design of the system focused on reducing petroleum use, lowering greenhouse gas emissions, and reducing criteria tailpipe emissions. Additionally, this vehicle has been designed as a partial zero emissions vehicle (PZEV), allowing the driver to travel up to 50 miles in a zero emission all-electric mode. High-energy traction battery packs can be charged from the grid, yielding higher efficiencies and lower critical emissions, or maintained through the internal combustion engine (ICE) as with a traditional hybrid vehicle.
X