Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Simulation of the Axial Cutting Deformation of AA6061-T6 Round Tubes Utilizing Eulerian and Mesh Free Finite Element Formulations

2008-04-14
2008-01-1117
Experimental and numerical studies have been completed on the deformation behaviour of round AA6061-T6 aluminum extrusions during an axial cutting deformation mode employing both curved and straight deflectors to control the bending deformation of petalled side walls. Round extrusions of length 200 mm with a nominal wall thickness of 3.175 mm and an external diameter of 50.8 mm were considered. A heat treated 4140 steel alloy cutter and deflectors, both straight and curved, were designed and manufactured for the testing considered. The four blades of the cutter had an approximate average thickness of 1.00 mm which were designed to penetrate through the round AA6061-T6 extrusions. Experimental observations illustrated high crush force efficiencies of 0.82 for the extrusions which experienced the cutting deformation mode with the deflectors. Total energy absorption during the cutting process was approximately 5.48 kJ.
Journal Article

Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy

2008-04-14
2008-01-1120
This research focuses on comparing the biomechanical response of the head and neck of the Hybrid III 3-year-old anthropometric test device finite element model and pediatric cadaver data, under flexion-extension bending and axial tensile loading conditions. Previous experimental research characterized the quasi-static biomechanical response of the pediatric cervical spine under flexion-extension bending and tolerance in tensile distraction loading conditions. Significant differences in rotational and linear stiffness were found between the Hybrid III model and the pediatric cadaver data. In this research the biomechanical child cadaver neck response has been implemented into the 3-year-old Hybrid III child dummy FE model. An explicit finite element code (LS-DYNA) and the modified Hybrid III model were used to numerically simulate the previous cadaver tests and validate the altered Hybrid III neck.
Technical Paper

Responses of the Q3, Hybrid III and a Three Year Old Child Finite Element Model Under a Simulated 213 Test

2008-04-14
2008-01-1121
This research focuses on the response of the Q3, Hybrid III 3-year-old dummy and a child finite element model in a simulated 213 sled test. The Q3 and Hybrid III 3-year old child finite element models were developed by First Technology Safety Systems. The 3-year-old child finite element model was developed by Nagoya University by model-based scaling from the AM50 (50 percentile male) total human model for safety. The child models were positioned in a forward facing, five-point child restraint system using Finite Element Model Builder. An acceleration pulse acquired from an experimental 213 sled test, which was completed following the guidelines outlined in the Federal Motor Vehicle Safety Standard 213 using a Hybrid III 3-year-old dummy, was applied to the seat buck supporting the child restraint seat. The numerical simulations utilizing the Q3, Hybrid III 3-year-old and the child finite element model were conducted using the explicit non-linear finite element code LS-DYNA.
Technical Paper

Implementation of Child Biomechanical Neck Behaviour into a Child FE Model

2009-04-20
2009-01-0472
This research focuses on the further development of a child finite element model whereby implementation of pediatric cadaver testing observations considering the biomechanical response of the neck of children under tensile and bending loading has occurred. Prior to this investigation, the biomechanical neck response was based upon scaled adult cadaver behaviour. Alterations to the material properties associated with ligaments, intervertebral discs and facet joints of the pediatric cervical spine were considered. No alteration to the geometry of the child neck finite element model was considered. An energy based approach was utilized to provide indication on the appropriate changes to local neck biomechanical characteristics. Prior to this study, the biomechanical response of the neck of the child finite element model deviated significantly from the tensile and bending cadaver tests completed by Ouyang et al.
Technical Paper

Use of Rigid and Deformable Child Restraint Seats in Finite Element Simulations of Frontal Crashes

2006-04-03
2006-01-1141
This research focuses on the injury potential of children seated in forward facing child restraint seats during frontal vehicle crashes. Experimental sled tests were completed in accordance to the Federal Motor Vehicle Safety Standard 213 using a Hybrid III three-year-old dummy in a five point child restraint system. A full vehicle crash test was completed in accordance to the Canadian Motor Vehicle Safety Standard 208 with the addition of a three-year-old Hybrid III crash test dummy, seated behind the passenger seat, restrained in the identical five-point child safety seat. Different child restraint finite element models were developed incorporating a subset of the apparatus used in the two experimental tests and simulated using LS-DYNA.
X