Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Air System Control for Advanced Diesel Engines

2007-04-16
2007-01-0970
In order to satisfy environmental regulations while maintaining strong performance and excellent fuel economy, advanced diesel engines are employing sophisticated air breathing systems. These include high pressure and low pressure EGR (Hybrid EGR), intake and exhaust throttling, and variable turbine geometry systems. In order to optimize the performance of these sub-systems, system level controls are necessary. This paper presents the design, benefits and test results of a model-based air system controller applied to an automotive diesel engine.
Technical Paper

AUTOSAR on the Road

2008-10-20
2008-21-0019
The AUTomotive Open System ARchitecture (AUTOSAR) Development Partnership has published early 2008 the specifications Release 3.0 [1], with a prime focus on the overall architecture, basic software, run time environment, communication stacks and methodology. Heavy developments have taken place in the OEM and supplier community to deliver AUTOSAR loaded cars on the streets starting 2008 [2]. The 2008 achievements have been: Improving the specifications in order to secure the exploitation for body, chassis and powertrain applications Adding major features: safety related functionalities, OBD II and Telematics application interfaces.
Technical Paper

Influence of Freestream Turbulence on Heat Transfer to Passenger Cars in Climatic Wind Tunnels

2002-03-04
2002-01-0505
The objective of this paper is to explore the influence of freestream turbulence on heat transfer processes to passenger cars in climatic wind tunnels. This will include a consideration of different flow zones on the vehicles. It will be shown up to which value of the turbulence intensity the influence on the heat transfer to the passenger compartment remains insignificant. The effects of freestream turbulence on the design and operation of climatic wind tunnels are discussed. The upper limit for the turbulence intensity can be regarded as a sizing quantity to be used in planning and operating vehicle-climatic wind tunnels in the future.
Technical Paper

A Study of the Catalytic Reduction of NOx in Diesel Exhaust

1996-10-01
962042
Reduction of nitrogen oxides in Diesel exhaust gas is a challenging task. This paper reports results from an extensive study using Pt-based catalysts involving synthetic gas activity testing (SCAT), engine bench testing and tests on passenger cars. Preliminary SCAT work highlighted the importance of Pt-dispersion, and both SCAT and bench engine testing yielded comparable NOx conversions under steady state conditions at high HC:NOx ratios. On passenger cars in the European cycle without secondary fuel injection NOx conversion was lower than obtained in the steady state tests. Better conversion was obtained in the FTP cycle, where secondary injection was employed. Higher HC:NOx, ratios and more favourable temperature conditions which were present in the exhaust contributed to this higher conversion.
Technical Paper

Present and Future Fuels and Lubricants in Cold Climate Operation

1989-02-01
890032
The addition of oxygen-containing components into gasoline exerts a sustained influence on the cold start and warm-up performance of vehicles. The influences are shown on the basis of test results with motor vehicles. The cold start performance of vehicles with an alternative fuel such as methanol is very strongly dependent on the composition of a properly tailored fuel. This fuel should contain light boiling components for the best performance. Results from methanol fuelled vehicles under cold climate conditions are shown here. The warm-up conditions of an 1.3 l-engine starting at -10°C were researched. The additional fuel required under these conditions for heating all the components of the egine including the coolant and lubricant was calculated after the basic measurement of their temperature rise. The additional fuel required due to the higher friction was investigated by motoring the engine.
Technical Paper

Motors EA 111 - Assembly Line Simulation at Volkswagen

2008-10-07
2008-36-0252
Volkswagen has built a simulation model of the EA 111 Motors assembly line. It was an important model to study the plant capacity increasing. The study was made in two phases: 500 motors/day and then 1.200motors/day. Using this model, the company could run different scenarios quickly and identify the bottlenecks in the system. So, they could take better decisions in this capacity planning study avoiding future problems in this assembly line.
Technical Paper

The Effect of Fuel Specifications and Different Aftertreatment Systems on Exhaust Gas Odour and Non-Regulated Emissions at Steady State and Dynamic Operation of DI-Diesel Engines

1999-10-25
1999-01-3559
Diesel exhaust gas contains low molecular aliphatic carbonyl compounds and strongly smelling organic acids, which are known to have an irritant influence on eyes, nose and mucous membranes. Thus, diesel exhaust aftertreatment has to be considered more critically than that of gasoline engines, with respect to the formation of undesired by-products. The results presented here have been carried out as research work sponsored by the German Research Association for Internal Combustion Engines (FVV). The main objective of the three year project was to evaluate the behaviour of current and future catalyst technology on the one hand (oxidation catalyst, CRT system, SCR process), and regulated and certain selected non-regulated exhaust gas emission components and exhaust gas odour on the other hand.
Technical Paper

Electric Axle Sizing for the Conversion of a Conventional Production Vehicle to a Prototype Battery Electric Vehicle

2020-10-23
2020-01-5093
The “Car of the Future” project converted a production 2015 rear-wheel-drive (RWD) Subaru BRZ into a series hybrid electric vehicle (HEV) with an intermediate milestone of a battery electric vehicle (BEV). This intermediate BEV step provided a point at which the vehicle could be evaluated in its all-electric operation with the absence of what were once critical components, including its original powertrain and powertrain electronics. This paper selects an appropriate electric machine that will meet the desired requirements for the “Car of the Future” BEV milestone. Vehicle technical specifications (VTS), which define critical vehicle requirements, were provided by the sponsor and adjusted to align with common requirement criteria such as acceleration and gradeability.
Technical Paper

xEV Propulsion System Control-Overview and Current Trends

2021-04-06
2021-01-0781
Propulsion system control algorithms covering the functional needs of xEV propulsion (‘x’ donates P0-P4 configurations) systems are presented in this paper. The scope and foundation are based on generic well-established HEV controller architectures. However, unlike conventional HEV (series, parallel and power split) powertrains, the next generation of integrated electric propulsion configurations will utilize a single micro controller that supports multiple control functions ranging from the electric machines, inverters, actuators, clutch solenoids, coolant pumps, etc. This presents a unique challenge to architect control algorithms within the AUTOSAR framework while satisfying the complex timing requirements of motor/generator-inverter (MGi) control and increased interface definitions between software components to realize functional integration between the higher level propulsion system and its sub-systems.
Journal Article

Optimization of Fuel Economy Using Optimal Controls on Regulatory and Real-World Driving Cycles

2020-04-14
2020-01-1007
In recent years, electrification of vehicle powertrains has become more mainstream to meet regulatory fuel economy and emissions requirements. Amongst the many challenges involved with powertrain electrification, developing supervisory controls and energy management of hybrid electric vehicle powertrains involves significant challenges due to multiple power sources involved. Optimizing energy management for a hybrid electric vehicle largely involves two sets of tasks: component level or low-level control task and supervisory level or high-level control task. In addition to complexity within powertrain controls, advanced driver assistance systems and the associated chassis controls are also continuing to become more complex. However, opportunities exist to optimize energy management when a cohesive interaction between chassis and powertrain controls can be realized.
Technical Paper

Effect of Standard Tuning Parameters on Mixture Homogeneity and Combustion Characteristics in a Hydrogen Direct Injection Engine

2023-04-11
2023-01-0284
Dihydrogen, as a zero CO2 fuel, is a strong candidate for internal combustion engine to limit global warming. This study shows the impact of standard tuning parameters on mixture homogeneity and combustion characteristics. A 2.2L Diesel engine on which the head was reworked to allow side mounted direct injector and central mounted spark plug was selected. The discussed tests were made at low engine speed and partial load. A spark advance sweep at different air-fuel ratios (λ) was conducted. The exponential relation between λ and NOx emissions is highly marked and extremely low NOx emissions up to 1.7 g/kWh at minimum spark advance for maximum brake torque can be measured. A λ sweep was performed at different starts of injection (SOI). The results show that, depending on the engine speed, a later SOI might lead to lower NOx emissions. For a λ setpoint of 1.8, at 1500 rpm, late SOI leads to 30% higher NOx emissions where at 2500 rpm these emissions are 26% lower.
Technical Paper

Valvetrain System for Exhaust Rebreathing on a Light-Duty Gasoline Compression Ignition (GCI) Engine

2023-10-31
2023-01-1673
The global automotive industry is undergoing a significant transition as battery electric vehicles enter the market and diesel sales decline. It is widely recognized that internal combustion engines (ICE) are needed for transport for years to come, however, demands on fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieving demanding future efficiency and emissions targets. A key technology enabler for GCI is partially premixed, compression ignition (PPCI) combustion, which involves two high-pressure, late, fuel injections during the compression stroke. Both NOx and smoke emissions are greatly reduced relative to diesel engines, and this reduces aftertreatment (AT) requirements significantly. Exhaust rebreathing (RB) is used for robust low-load and cold operation. This is enabled by use of 2-Step, mode switching rocker arms to allow switching between rebreathe and normal combustion modes.
X