Criteria

Text:
Sector:
Display:

Results

Viewing 1 to 30 of 99
CURRENT
2003-09-24
Standard
J1442_200309
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
HISTORICAL
1993-11-01
Standard
J1442_199311
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
HISTORICAL
1988-12-01
Standard
J1442_198812
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
2009-01-15
WIP Standard
J1442
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
HISTORICAL
1984-06-01
Standard
J1442_198406
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
CURRENT
1997-11-01
Standard
J1975_199711
This SAE Information Report summarizes the characteristics of carburized steels and factors involved in controlling hardness, microstructure, and residual stress. Methods of determining case hardenability are reviewed, as well as methods to test for freedom from non-martensitic structures in the carburized case. Factors influencing case hardenability are also reviewed. Methods of predicting case hardenability are included, with examples of calculations for several standard carburizing steels. A bibliography is included in 2.2. The references provide more detailed information on the topics discussed in this document.
HISTORICAL
1991-06-01
Standard
J1975_199106
This SAE Information Report summarizes the characteristics of carburized steels and factors involved in controlling hardness, microstructure, and residual stress. Methods of determining case hardenability are reviewed, as well as methods to test for freedom from non-martensitic structures in the carburized case. Factors influencing case hardenability are also reviewed. Methods of predicting case hardenability are included, with examples of calculations for several standard carburizing steels. A bibliography is included in 2.2. The references provide more detailed information on the topics discussed in this document.
CURRENT
2010-03-01
Standard
J2281_201003
This SAE Information Report relates to hot-rolled steel bar products. It is intended as a guideline to assist in the selection and specification of hot-rolled steel bar; however, it is not to be interpreted as a material specification in itself.
HISTORICAL
1997-05-01
Standard
J2281_199705
This SAE Information Report relates to hot-rolled steel bar products. It is intended as a guideline to assist in the selection and specification of hot-rolled steel bar; however, it is not to be interpreted as a material specification in itself. To provide general information about steel bar products and to provide a guideline for their selection and specification.
2009-01-15
WIP Standard
J1397
This SAE Information Report is intended to provide a guide to mechanical and machinability characteristics of some SAE steel grades. The ratings and properties shown are provided as general information and not as requirements for specifications unless each instance is approved by the source of supply. The data are based on resources which may no longer be totally accurate. However, this report is retained as a service in lieu of current data.
HISTORICAL
1988-12-01
Standard
J1397_198812
This SAE Information Report is intended to provide a guide to mechanical and machinability characteristics of some SAE steel grades. The ratings and properties shown are provided as general information and not as requirements for specifications unless each instance is approved by the source of supply. The data are based on resources which may no longer be totally accurate. However, this report is retained as a service in lieu of current data.
HISTORICAL
1982-07-01
Standard
J1397_198207
This SAE Information Report is intended to provide a guide to mechanical and machinability characteristics of some SAE steel grades. The ratings and properties shown are provided as general information and not as requirements for specifications unless each instance is approved by the source of supply. The data are based on resources which may no longer be totally accurate. However, this report is retained as a service in lieu of current data.
CURRENT
1992-05-01
Standard
J1397_199205
This SAE Information Report is intended to provide a guide to mechanical and machinability characteristics of some SAE steel grades. The ratings and properties shown are provided as general information and not as requirements for specifications unless each instance is approved by the source of supply. The data are based on resources which may no longer be totally accurate. However, this report is retained as a service in lieu of current data.
2013-08-14
WIP Standard
J1081
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
HISTORICAL
1979-02-01
Standard
J1081A_197902
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
HISTORICAL
1977-02-01
Standard
J1081_197702
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
HISTORICAL
1980-10-01
Standard
J1081_198010
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
HISTORICAL
1983-11-01
Standard
J1081_198311
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
HISTORICAL
1981-06-01
Standard
J1081_198106
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
CURRENT
2000-11-10
Standard
J1081_200011
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
HISTORICAL
1988-12-01
Standard
J368_198812
The steels covered by this SAE Recommended Practice have enhanced mechanical properties obtained by quench and temper treatment. Grade Q550 is a carbon-manganese steel, while grades Q550B, Q620B, and Q690B are carbon-manganese boron steels. Other grades (designated by suffix A) represent steels containing one or more additional alloying elements as required to achieve higher strengths and to accommodate greater thicknesses. These steels are produced fully deoxidized and to fine grain practice. Since these steels are characterized by their mechanical properties, care must be exercised in the selection of grade, especially where fabrication by welding or forming is required. Special procedures may be applicable to varying compositions and section sizes, as produced by a given supplier; therefore, the purchaser should consult with the producer in order to be aware of these variables.
CURRENT
1993-03-01
Standard
J368_199303
The steels covered by this SAE Recommended Practice have enhanced mechanical properties obtained by quench and temper treatment. Grade Q550 is a carbon-manganese steel, while grades Q550B, Q620B, and Q690B are carbon-manganese boron steels. Other grades (designated by suffix A) represent steels containing one or more additional alloying elements as required to achieve higher strengths and to accommodate greater thicknesses. These steels are produced fully deoxidized and to fine grain practice. Since these steels are characterized by their mechanical properties, care must be exercised in the selection of grade, especially where fabrication by welding or forming is required. Special procedures may be applicable to varying compositions and section sizes, as produced by a given supplier; therefore, the purchaser should consult with the producer in order to be aware of these variables.
HISTORICAL
1977-11-01
Standard
J401_197711
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
HISTORICAL
1988-12-01
Standard
J401_198812
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
HISTORICAL
1981-04-01
Standard
J401_198104
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
CURRENT
2012-03-12
Standard
J401_201203
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
HISTORICAL
2000-04-10
Standard
J401_200004
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the high-strength, low-alloy steels in SAE J1392 and J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
HISTORICAL
1981-06-01
Standard
J402_198106
This SAE Standard is intended to supply a uniform means of designating wrought ferrous materials reported in SAE Standards and Recommended Practices.
HISTORICAL
1977-11-01
Standard
J402B_197711
This SAE Standard is intended to supply a uniform means of designating wrought ferrous materials reported in SAE Standards and Recommended Practices.
HISTORICAL
1993-11-08
Standard
J402_199311
This SAE Standard is intended to supply a uniform means of designating wrought ferrous materials reported in SAE Standards and Recommended Practices.
Viewing 1 to 30 of 99