Criteria

Text:
Sector:
Author:
Display:

Results

Viewing 1 to 30 of 55
2010-04-12
Journal Article
2010-01-0477
Hu Li, Gordon E. Andrews, Dimitrios Savvidis
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function of cold start and ambient temperatures. A real-world driving cycle has been developed at Leeds and referred as LU-BS, which has an urban free flow driving pattern. The test vehicle was driven on the same route by the same driver on different days with different ambient temperatures. All the journeys were started from cold. An in-vehicle FTIR emission measurement system was installed on a EURO2 emission compliance SI car for emissions measurement at a rate of 0.5 Hz. This emission measurement system was calibrated on a standard CVS measurement system and showed an excellent agreement on the CO₂ measurement with the CVS results. The N₂O and CH₄ were calibrated by calibration gas bottles.
2000-03-06
Technical Paper
2000-01-0234
Gordon E. Andrews, Hu Li, M. H. Jones, J. Hall, A. A. Rahman, S. Saykali
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater, to remove water and light diesel fractions in the oil. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical Euro 2 emissions compliance single decker buses, fitted with Cummins 6 cylinder 8.3 litre turbocharged intercooled engines. These vehicles had oil deterioration and emissions characteristics that were significantly different, in spite of their similar age and total mileage. Comparison was made with the oil quality on the same vehicles and engines with and without the on-line recycler. Oil samples were analysed about every 2000 miles. All tests started with an oil drain and fresh lubricating oil.
2000-03-06
Technical Paper
2000-01-0232
Gordon E. Andrews, Hu Li, J. Hall, A. A. Rahman, S. Saykali
: A method of cleaning diesel engine lubricating oil on-line was investigated using a bypass fine particulate filter followed by an infra-red heater to remove water vapour and light diesel fractions in the oil. The impact of this oil recycler on the gaseous and particulate emissions was investigated over a 300 hour oil age period. A Ford 1.8 litre IDI passenger car diesel engine was used with engine out emission sampled every 15-20 hours. The tests were carried out at 2500rpm (52% of the maximum speed) and 12.3 kW with 47 Nm load (43% of the maximum load and 29% of the maximum power). The EGR level at this condition was 15%. A stop start test cycle was used with a cold start each time and a typical test period of 2-3 hours. The results showed that the recycler had its greatest influence on emissions for fresh oil when there was a large reduction in particulate emissions due mainly to large reductions in the ash, carbon and unburned lubricating oil fractions.
2010-04-12
Technical Paper
2010-01-1072
Basil Daham, Hu Li, Gordon E. Andrews, James Tate, Karl Ropkins, Margaret Bell
A Euro 2 SI (Spark Ignition) Mondeo was investigated for a fully warmed-up vehicle on a simple urban driving loop. Emissions were monitored using an on-board Horiba OBS (On-Board emission measurement System) 1300. 10 laps of a 0.6 km loop were driven by each driver and this involved 4 junctions per lap. Statistical analysis of 20 drivers was made over 27 repeat junction events for each driver. The statistical analysis of the data showed that for all drivers the CO₂, speed and throttle position were more typical Gaussian in their distribution. NOx and CO on the other hand were lognormal in their distribution. Acceleration, positive and negative throttle jerks (rate of change of throttle angle) were borderline Gaussian. HC (Hydrocarbon) emissions were not Gaussian and there was some evidence for a gamma distribution and for a lognormal distribution. Comparison of mean HC emissions between the drivers was therefore not reliable.
2005-04-11
Technical Paper
2005-01-0676
Basil Daham, Gordon E. Andrews, Hu Li, Rosario Ballesteros, Margaret C. Bell, James Tate, Karl Ropkins
The objective of this work was the development of an on-road in-vehicle emissions measurement technique utilizing a relatively new, commercial, portable Fourier Transform Infra-Red (FTIR) Spectrometer capable of identifying and measuring (at approximately 3 second intervals) up to 51 different compounds. The FTIR was installed in a medium class EURO1 spark ignition passenger vehicle in order to measure on-road emissions. The vehicle was also instrumented to allow the logging of engine speed, road speed, global position, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. This instrumentation allowed the calculation of mass-based emissions from the volume-based concentrations measured by the FTIR. To validate the FTIR data, the instrument was used to measure emissions from an engine subjected to a real-world drive cycle using an AC dynamometer.
2005-04-11
Technical Paper
2005-01-1620
Basil Daham, Gordon E. Andrews, Hu Li, Mark Partridge, Margaret C. Bell, James Tate
The objective of this work was to determine the effect of one form of traffic calming on emissions. Traffic calming is aimed at reducing average vehicle speeds, especially in residential neighborhoods, often using physical road obstructions such as speed bumps, but it also results in a higher number of acceleration/deceleration events which in turn yield higher emissions. Testing was undertaken by driving a warmed-up Euro-1 spark ignition passenger car over a set of speed bumps on a level road, and then comparing the emissions output to a non-calmed level road negotiated smoothly at a similar average speed. For the emissions measurements, a novel method was utilized, whereby the vehicle was fitted with a portable Fourier Transform Infrared (FTIR) spectrometer, capable of measuring up to 51 different components in real-time on the road. The results showed that increases in emissions were much greater than was previously reported by other researchers using different techniques.
2005-04-11
Technical Paper
2005-01-1617
Gordon E. Andrews, Hu Li, J. A. Wylie, Grant Zhu, Margaret Bell, James Tate
The influence of ambient temperature on exhaust emissions for an instrumented Euro 1 SI car was determined for urban congested traffic conditions. In UK cities cold-starting vehicles directly into congested traffic conditions is a common occurrence that is not currently taken into account when modeling urban traffic pollution. In-vehicle emission samples were taken directly from the exhaust, upstream and downstream of the catalyst, using the bag sampling technique. The first bag was for the cold start emissions and approximately the first 1.1 km of travel. The following three bags were with a hotter catalyst. The cold start tests were conducted over a year, with ambient temperatures ranging from 2°C to 30°C. The results showed that CO emissions for the cold start were reduced by 70% downstream of the catalyst when the ambient temperature rose from 2°C to 30°C. The corresponding hydrocarbon emissions were reduced by 41% and NOx emissions were increased by 90%.
2012-04-16
Technical Paper
2012-01-0435
Seyed Ali. Hadavi, Hu Li, Patrick Biller, Amanda Lea-Langton, Gordon Andrews, Grzegorz Przybyla
Pure rape seed oil (RSO), as coded BO100 (BO: Bio-Oil) to distinguish from biodiesel was investigated for a range of intake oxygen levels from 21 to 24%. RSO can have deposit problems in both the fuel injector and piston crown and elevated intake oxygen levels potentially could control these by promoting their oxidation. Increased intake oxygen elevates the peak temperature and this promotes the oxidation of soot and volatile organic compounds. The effect of this on particle mass and on the particle size distribution was investigated using a 6-cylinder 6-liter Perkins Phaser Euro 2 DI diesel engine. The tests were conducted at 47 kW brake power output at 1500 rpm. The particle size distribution was determined from the engine-out exhaust sample using a Dekati microdilution system and nano-SMPS analyzer. The results showed that for air RSO had higher particle mass than diesel and that this mass decreased as the oxygen level was increased.
2015-04-14
Technical Paper
2015-01-1064
Ahmad Khalfan, Hu Li, Gordon Andrews
Abstract The tailpipe exhaust emissions were measured under real world urban driving conditions by using a EURO4 emissions compliant SI car equipped with an on-board heated FTIR for speciated gaseous emission measurements, a differential GPS for travel profiles, thermocouples for temperatures, and a MAX fuel meter for transient fuel consumption. Emissions species were measured at 0.5 Hz. The tests were designed to enable cold start to occur into congested traffic, typical of the situation of people living alongside congested roads into a large city. The cold start was monitored through temperature measurements of the TWC front and rear face temperatures and lubricating oil temperatures. The emissions are presented to the end of the cold start, defined when the downstream TWC face temperature is hotter than the front face which occurred at ∼350-400oC. Journeys at various times of the day were conducted to investigate traffic flow impacts on the cold start.
2013-04-08
Technical Paper
2013-01-1518
David W. Wyatt, Hu Li, James Tate
The Carbon Dioxide (CO₂) emission from a EURO 3 diesel van over a real-world driving cycle were investigated utilizing part of the Leeds University - Headingly Ring Road (LU-HR) driving cycle, which comprises both an urban (congested) and extra-urban (high speed) driving section. The vehicle used in this research was a 1.8-liter Ford Connect TDCi diesel van. Emissions were monitored by a Portable Emissions Measurement System (PEMS) incorporating an on-board FTIR (Fourier Transform Infrared) exhaust emission measurement system, a Horiba On Board emissions measuring System (OBS 1300) which measured the exhaust flow rate and air/fuel ratio, and a RaceLogic VBOX II differential GPS system provided geographical position, speed and acceleration data. Route topography is known to have substantial influence on vehicle emission.
2008-04-14
Technical Paper
2008-01-0076
Hu Li, Amanda Lea-Langton, Gordon E. Andrews, Mark Thompson, Clifford Musungo
Rape oil, as used in fresh cooking oil (FCO), and the methyl ester derived from waste cooking oil (WCOB100) were tested as 100% biofuels (B100) on a heavy duty DI diesel engine under steady state conditions. The exhaust emissions were measured and compared to those for conventional low sulphur (<50ppm) diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Euro2 Phaser Engine, fitted with an oxidation catalyst. The engine out gaseous emissions results for WCOB100 showed a large decrease in CO and HC emissions, but a small increase in NOx emissions compared to diesel. However, for FCO the CO and HC increased relative to WCOB100 and CO was higher than for diesel, indicating deterioration in fuel/air mixing. The particulate matter (PM) emissions for WCOB100 were similar to those for diesel at the 23kw condition, but greatly reduced at 47kw. The FCO produced higher engine out PM at both power conditions due to a higher volatile organic fraction (VOF).
2009-11-02
Journal Article
2009-01-2642
Hu Li, Amanda Lea-Langton, Patrick Biller, Gordon E. Andrews, Seyed Hadavi, Alex Charlton, Paul Richards
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
2009-04-20
Technical Paper
2009-01-0486
Amanda Lea-Langton, Hu Li, Gordon E. Andrews, Patrick Biller
This work investigates the heating of unprocessed rapeseed oil as a means to improve fuel delivery by reducing the fuel viscosity, and to assess the effects on combustion performance. The results show that a simple low power heater with thermal insulation around the fuel line and pump can effectively raise the operational fuel temperature at delivery to the pump. The results show that even with a moderate temperature increase, the fuel flow limitations with rapeseed oil are reduced and the legislated gaseous emissions are reduced at steady state conditions. As one of the main reasons for the conversion of straight oils to the methyl ester, ie biodiesel, is to reduce the viscosity, this work shows that heating the oil can have a similar effect. An emissions benefit is observed with biodiesel compared to rapeseed oil but this is not large. There is also a significant greenhouse gas and cost benefit associated with straight vegetable oils.
2009-04-20
Technical Paper
2009-01-1515
Amanda Lea-Langton, Hu Li, Gordon E. Andrews
Aldehydes and other Volatile Organic compounds (VOC) are assessed under cold start and steady state conditions using a Perkins Phaser 6 litre diesel engine. A comparison is made between petroleum diesel fuel (PD), 100% biodiesel (WME) and 100% rapeseed oil (RSO). A Temet FTIR was used to determine aldehydes including formaldehyde, acetaldehyde and acrolein. The diesel engine was cold started at room temperature using a step start up procedure that kept the power output constant at two steady state conditions: 23kW and 47kW. Very little difference was observed between petroleum diesel and biodiesel aldehyde emissions at either steady state conditions or during cold start. There was, however, an increase in aldehydes at steady state for rapeseed oil, particularly at low load, but only for from ∼10ppm to 25 ppm for formaldehyde (i.e. 0.12g/kWh to 0.37g/kWh). During cold start conditions, the emissions were significantly higher for rapeseed oil than for petroleum diesel.
2009-06-15
Technical Paper
2009-01-1865
Hu Li, Gordon E. Andrews, Dimitrios Savvidis
New EU environmental law requires 31 ozone precursor VOCs (Volatile Organic Compounds) to be measured for urban air quality control. In this study, 23 out of the 31 ozone precursor VOCs were measured at a rate of 0.5 HZ by an in-vehicle FTIR (Fourier Transform InfraRed) emission measurement system along with 15 other VOCs. The vehicle used was a EURO2 emission compliant SI car. The test vehicle was driven under real world urban driving conditions on the same route by the same driver on different days at different ambient temperatures. All the journeys were started from cold. The VOC emissions and OFP (Ozone Formation Potential) as a function of engine warm up and ambient temperatures during cold start were investigated. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOCs was monitored.
2008-06-23
Technical Paper
2008-01-1648
Hu Li, Gordon E Andrews, Dimitrios Savvidis, Basil Daham, Karl Ropkins, Margaret Bell, James Tate
An in-vehicle FTIR emission measurement system was used to investigate the exhaust emissions under different real world urban driving conditions. Five different driving cycles were developed based on real world urban driving conditions including urban free flow driving, junction maneuver, congested traffic and moderate speed cruising. The test vehicle was a EURO 2 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst and real time fuel consumption measurement system. Both regulated and non-regulated emissions were measured and analyzed for different driving cycles. All journeys were started from cold. The engine warm up features and emissions as a function of engine warm up for different driving conditions were investigated.
2008-06-23
Journal Article
2008-01-1749
Hu Li, Gordon E Andrews, Dimitrios Savvidis, Basil Daham, Karl Ropkins, Margaret Bell, James Tate
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport: CO2, N2O and CH4 emissions as a function of engine warm up and driving cycles. Five different urban driving cycles were developed and used including free flow driving and congested driving. An in-vehicle FTIR (Fourier Transform Inferred) emission measurement system was installed on a EURO2 emission compliant SI (Spark Ignition) car for emissions measurement at a rate of 0.5 HZ under real world urban driving conditions. This emission measurement system was calibrated on a standard CVS (Constant Volume Sampling) measurement system and showed excellent agreement on CO2 measurement with CVS results. The N2O and CH4 measurement was calibrated using calibration gas in lab. A MAX710 real time in-vehicle fuel consumption measurement system was installed in the test vehicle and real time fuel consumption was then obtained.
2008-10-06
Technical Paper
2008-01-2489
Hu Li, Amanda Lea-Langton, Gordon E. Andrews, Mark Gasser, Joe Green
A 10W-50 G4 synthetic lubricating oil (EULUBE oil) was tested on a heavy duty DI diesel engine under two steady state conditions. The exhaust emissions were measured and compared to a 10W-30 CF semi-synthetic lubricating oil. The EULUBE oil contained the friction reduction additive to improve the fuel economy. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Gaseous and particulates emissions were measured. Particulate size distribution was measured using ELPI and SMPS. The particulate samples were analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. The results showed a significant reduction by synthetic lubricating oil in gaseous hydrocarbon emissions, total particulate mass, particulate carbon and ash.
2008-10-06
Technical Paper
2008-01-2428
Hu Li, Gordon E Andrews, Dimitrios Savvidis, Karl Ropkins, James Tate, Margaret Bell
Regulated and non-regulated tailpipe exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. A EURO3 emission compliant SI car was used as a probe vehicle. An urban driving cycle was used for the test and four repeated journeys were conducted. The results were compared to EU emissions legislation. The results show that the TWC needed approximately 200 seconds to reach full conversion efficiency. THC and NOx emissions exceeded the EURO 3 exhaust emission legislation. CO2 emissions were well above the type approval value of this type of the vehicle. Greenhouse gases (methane and nitrous oxide) and toxic hydrocarbons such as benzene were predominantly emitted during cold start period from 0 to 200 seconds of the engine start. The results had a reasonable repeatability for most of the emissions.
2007-01-23
Technical Paper
2007-01-0074
Hu Li, Gordon E. Andrews, Juan L. Balsevich-Prieto
A rapeseed methyl ester biodiesel RMEB100 was tested on a heavy duty DI diesel engine under steady state conditions. The combustion performance and exhaust emissions were measured and compared to a standard petroleum derived diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Particulates were collected and analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. A FTIR analysis system was deployed for gaseous hydrocarbon speciation, which is capable of speciating up to 65 species. The results showed a significant reduction in total particulate mass, particulate VOF, CO, THC and aldehydes when using RMEB100.
2007-01-23
Technical Paper
2007-01-0062
Gordon E. Andrews, Fathia M. Ahamed, Hu Li
Condensable and gaseous hydrocarbon emissions and speciation of the hydrocarbons have been investigated using a EURO1 emissions compliant SI (Spark Ignition) car. Exhaust gas samples were simultaneously collected upstream and downstream of the catalyst using a system containing cold ice trap, resin, particulate filter block and Teflon gas sampling bag. GC (Gas Chromatography) was employed to analyze for hydrocarbons and 16 of the more significant hydrocarbons are reported. The test was carried out using both cold start and hot start driving cycles. Results show that the benzene and toluene were major species emitted from the tailpipe under cold start conditions. Methylnaphthalene was a dominated hydrocarbon under hot start conditions. The cold start had significant influence on hydrocarbon emissions. The catalyst out benzene emissions for cold start was thirty times higher than that for hot start.
2007-04-16
Technical Paper
2007-01-0308
Hu Li, Gordon E. Andrews, Basil Daham, Margaret Bell, James Tate, Karl Ropkins
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction and uphill/downhill road, and thereby the impact of road topography on emissions. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst could be monitored. Different turning movements (driving events) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was run until hot stable operating conditions were achieved before each test, thereby negating cold start effects.
2006-10-16
Technical Paper
2006-01-3368
Hu Li, Karl Ropkins, Gordon E Andrews, Basil Daham, Margaret Bell, James Tate, Gary Hawley
A series of chassis dynamometer test trials were conducted to assess the performance of a Fourier Transform Infra Red (FTIR) system developed for on-road vehicle exhaust emissions measurements. Trials used a EURO 1 emission compliant SI passenger car which, alongside the FTIR, was instrumented to allow the routine logging of engine speed, road speed, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. The chassis dynamometer facility incorporated an ‘industry standard’ measurement system comprising MEXA7400 gas analyzer and CVS bag sampling which was the ‘benchmark’ for the evaluation of FTIR legislated gas-phase emissions (CO, NOx, THC and CO2) measurements. Initial steady state measurements demonstrated strong correlations for CO, NOx and THC (R2 of 0.99, 0.97 0.99, respectively) and a good correlation for CO2 (R2 = 0.92).
2005-10-24
Technical Paper
2005-01-3896
Hu Li, Gordon E Andrews, Grant Zhu, Basil Daham, Margaret Bell, James Tate, Karl Ropkins
Thermal characteristics of SI engine exhaust during cold start and warm up period were investigated for different ambient temperatures (-2 to 32 °C). A Euro 1 emission compliance SI car was tested using a real world urban driving cycle to represent typical city driving patterns and simulate ECE15 urban driving cycle. The test car was equipped with 27 thermocouples along the engine and exhaust pipes so as to measure metal and exhaust gas temperatures along the engine, exhaust and catalyst. The characteristics of thermal properties of engine, exhaust system and catalyst were studied as a function of warm up time and ambient temperature. The temperature and time of the light-off of catalyst were investigated so as to evaluate the effect of thermal properties of the catalyst on emissions. The results show that the coolant water reached the full warm up about 5 minutes in summer and 9 minutes in winter after a cold start.
2004-10-25
Technical Paper
2004-01-2903
Gordon E. Andrews, Grant Zhu, Hu Li, Alex Simpson, James A. Wylie, Margaret Bell, James Tate
The influence of ambient temperature on exhaust emissions for an instrumented Euro 1 SI car was determined. A real world test cycle was used, based on an urban drive cycle that was similar to the ECE urban drive cycle. It was based on four laps of a street circuit and an emissions sample bag was taken for each lap. The bag for the first lap was for the cold start emissions. An in-vehicle direct exhaust dual bag sampling technique was used to simultaneously collect exhaust samples upstream and downstream of the three-way catalyst (TWC). The cold start tests were conducted over a year, with ambient temperatures ranging from - 2°C to 32°C. The exhaust system was instrumented with thermocouples so that the catalyst light off temperature could be determined. The results showed that CO emissions for the cold start were reduced by a factor of 8 downstream of catalyst when ambient temperature rose from -2°C to 32°C, the corresponding hydrocarbon emissions were reduced by a factor of 4.
2004-10-25
Technical Paper
2004-01-2905
Hu Li, Gordon E. Andrews
Mass weighted size distributions of particulate emissions as a function of oil age were investigated using a set of Anderson Impactors on an IDI passenger car engine test. This engine was fitted with an on-line bypass lubricating oil recycler aiming to extend the oil life, reduce fuel consumption and exhaust emissions. A stop start test cycle was used with a cold start each time and a typical cycle period of 2∼3 hours. The whole test was carried out for nearly 500 hours. The first 310 hours of testing were with the oil recycler fitted and thereafter the test continued with the oil recycler disconnected. The results show that 60∼80% of mass particulates were smaller than 1.1 μm in aerodynamic diameter with the oil recycler fitted and this percentage was reduced to 40∼60% after disconnection of the oil recycler. The changes in size distribution with oil age mainly happened in the size ranges of 1.1∼0.65 μm, 0.65∼0.43 μm and <0.43 μm.
2007-07-23
Technical Paper
2007-01-2066
Hu Li, Gordon E Andrews, Adnan A Khan, Dimitrios Savvidis, Basil Daham, Margaret Bell, James Tate, Karl Ropkins
A FTIR in-vehicle on-road emission measurement system was installed in a EURO 2 emissions compliant SI car to investigate exhaust emissions under different urban traffic conditions. The real time fuel consumption and vehicle traveling speed was measured and logged. The temperatures were measured along the exhaust pipe so as to monitor the thermal characteristics and efficiency of the catalyst. Two real world driving cycles were developed with different traffic conditions. One (WP cycle) was located in a quiet area with few traffic interference and the other one (HPL cycle) was in a busy area with more traffic variations. The test car was pre-warmed before each test to eliminate cold start effect. The driving parameters were analyzed for two real world cycles. The WP cycle had higher acceleration rate, longer acceleration mode and shorter steady speed driving mode and thus harsher than the HPL cycle.
2007-07-23
Technical Paper
2007-01-2065
Hu Li, Gordon E Andrews, Dimitrios Savvidis, Basil Daham, Karl Ropkins, Margaret Bell, James Tate
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a EURO 2 emission compliant SI car equipped with real time fuel consumption measurement and temperature measurement along the exhaust pipe across the catalyst allowing the matching of thermal characteristics to emission profiles and monitor fuel consumption. The temperature profile indicated that the light-off of the catalyst took about 150∼200 seconds. The warm up of the lubricating oil and coolant water required a longer time than the catalyst did. The impact of ambient temperatures on lubricating oil and coolant water warm ups was greater than that on the light-off of the catalyst. The heat loss and energy balance were calculated during the whole cycle period. The influence of cold start on fuel consumption was investigated.
2007-07-23
Technical Paper
2007-01-2067
Gordon E. Andrews, Ali. M. Ounzain, Hu Li, Margaret Bell, James Tate, Karl Ropkins
Lubricating oil takes all of the NEDC test cycle time to reach 90°C. Hence, this gives high friction losses throughout the test cycle, which leads to a significant increase in the fuel consumption. In real world driving, particularly in congested traffic, it is shown that lube oil warm-up is even slower than in the NEDC. Euro 1, 2 and 4 Ford Mondeo water and oil warm up rates in real world urban driving were determined and shown to be comparable with the results of Kunze et al. (2) for a BMW on the NEDC. This paper explores the use of forced convective heat exchange between the cooling water and the lube oil during the warm-up period. A technique of a step warm-up of the engine at 32 Nm at 2000 rpm (35% of peak power) was used and the engine lube oil and water temperature monitored. It was shown that the heat exchanger results in an increase in lube oil temperature by 4°C, which increased to 10°C if enhanced heat transfer to the water was used from an exhaust port heat exchanger.
2006-04-03
Technical Paper
2006-01-1080
Hu Li, Gordon E. Andrews, Basil Daham, Margaret Bell, James Tate, Karl Ropkins
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst monitored could be included in the analysis. Different turning movements (driving patterns) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was hot stable running conditions before each test, thereby negating cold start effects. To demonstrate the influence of the junction on tail-pipe emissions and fuel consumption, distance based factors were determined that compared the intersection drive-through measurements with steady speed (state) runs. Fuel consumption was increased at intersections by a factor of 1.3∼5.9.
Viewing 1 to 30 of 55

Filter

  • Range:
    to:
  • Year: