Criteria

Text:
Sector:
Author:
Display:

Results

Viewing 1 to 30 of 57
2013-09-08
Technical Paper
2013-24-0175
Daniele Littera, Alessandro Cozzolini, Marc Besch, Mario Velardi, Daniel Carder, Mridul Gautam
Stringent emission regulations have forced drastic technological improvements in diesel after treatment systems, particularly in reducing Particulate Matter (PM) emissions. Those improvements generally regard the use of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and lately also the use of Selective Catalyst Reduction (SCR) systems along with improved engine control strategies for reduction of NOx emissions from these engines. Studies that have led to these technological advancements were made in controlled laboratory environment and are not representative of real world emissions from these engines or vehicles. In addition, formation and evolution of PM from these engines are extremely sensitive to overall changes in the dilution process.
1999-10-25
Technical Paper
1999-01-3525
Paul Norton, Mike Frailey, Nigel Clark, Donald W. Lyons, Mridul Gautam, J. McKinley Addy, N. John Beck
Emissions from trucks and buses equipped with Caterpillar dual-fuel natural gas (DFNG) engines were measured at two chassis dynamometer facilities: the West Virginia University (WVU) Transportable Emissions Laboratory and the Los Angeles Metropolitan Transportation Authority (LA MTA). Emissions were measured over four different driving cycles. The average emissions from the trucks and buses using DFNG engines operating in dual-fuel mode showed the same trends in all tests - reduced oxides of nitrogen (NOx) and particulate matter (PM) emissions and increased hydrocarbon and carbon monoxide (CO) emissions - when compared to similar diesel trucks and buses. The extent of NOx reduction was dependent on the type of test cycle used.
1999-10-25
Technical Paper
1999-01-3565
Mridul Gautam, Sriram Popuri, Bret Rankin, Mohindar Seehra
Specific aspects of a study aimed at developing a microwave assisted regeneration system for diesel particulate traps are discussed. Results from thermal and microwave characteristic studies carried out in the initial phase of the study are reported. The critical parameters that need to be optimized, for achieving controlled regeneration, are microwave preheating time period, regenerative air supply, regenerative air temperature, and soot deposition. Using a 1000 W magnetron, power measurements were made to select the best waveguide configuration for optimized transmission. A six cylinder naturally aspirated, indirect injection diesel engine was retrofitted with a customized exhaust system that included a Corning EX80 (5.66″ × 6.00″) type ceramic particulate trap. An automated exhaust bypass system enabled trap loading and subsequent regeneration with a customized microwave regeneration system. The paper discusses the salient details of both on-line and off-line regeneration setups.
2011-09-11
Technical Paper
2011-24-0183
Vincenzo Mulone, Alessandro Cozzolini, Prabash Abeyratne, Marc Besch, Daniele Littera, Mridul Gautam
Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model.
2011-09-11
Technical Paper
2011-24-0187
Alessandro Cozzolini, Vincenzo Mulone, Prabash Abeyratne, Daniele Littera, Mridul Gautam
Diesel particulate filters (DPFs) are recognized as the most efficient technology for particulate matter (PM) reduction, with filtration efficiencies in excess of 90%. Design guidelines for DPFs typically are: high removal efficiency, low pressure drop, high durability and capacity to resist high temperature excursions during regeneration events. The collected mass inside the trap needs to be periodically oxidized to regenerate the DPF. Thus, an in-depth understanding of filtration and regeneration mechanisms, together with the ability of predicting actual DPF conditions, could play a key role in optimizing the duration and number of regeneration events in case of active DPFs. Thus, the correct estimation of soot loading during operation is imperative for effectively controlling the whole engine-DPF assembly and simultaneously avoidingany system failure due to a malfunctioning DPF. A viable way to solve this problem is to use DPF models.
2011-09-11
Technical Paper
2011-24-0175
Daniele Littera, Marc Besch, Alessandro Cozzolini, Daniel Carder, Arvind Thiruvengadam, Adam Sayres, Hemanth Kappanna, Mridul Gautam, Adewale Oshinuga
In order to comply with stringent 2010 US-Environmental Protection Agency (EPA) on-road, Heavy-Duty Diesel (HDD) emissions regulations, the Selective Catalytic Reduction (SCR) aftertreatment system has been judged by a multitude of engine manufacturers as the primary technology for mitigating emissions of oxides of nitrogen (NOx). As virtually stand-alone aftertreatment systems, SCR technology further represents a very flexible and efficient solution for retrofitting legacy diesel engines as the most straightforward means of cost-effective compliance attainment. However, the addition of a reducing agent injection system as well as the inherent operation limitations of the SCR system due to required catalyst bed temperatures introduce new, unique problems, most notably that of ammonia (NH₃) slip.
2010-10-05
Technical Paper
2010-01-1968
Idowu Olatunji, Scott Wayne, Mridul Gautam, Nigel Clark, Gregory Thompson, David McKain, Petr Sindler, John Nuszkowski
Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (PD). Emissions differences between vehicles operated on biodiesel blends and on diesel have been published previously, but data do not cover the latest engine technologies. Prior studies have shown that biodiesel offers advantages in reducing particulate matter, with either no advantage or a slight disadvantage for oxides of nitrogen emissions. This paper describes a recent study on the emissions impact of two biodiesel blends B20A, made from 20% animal fat (tallow) biodiesel and 80% PD, and B20B, obtained from 20% soybean biodiesel and 80% PD. These blends used the same PD fuel for blending and were contrasted with the same PD fuel as a reference. The research was conducted on a 2007 medium heavy-duty diesel truck (MHDDT), with an engine equipped with Exhaust Gas Recirculation (EGR) and a Diesel Particulate Filter (DPF).
2010-10-05
Technical Paper
2010-01-1967
Nigel Clark, David L. McKain, Petr Sindler, Ronald Jarrett, John Nuszkowski, Mridul Gautam, W Wayne, Gregory Thompson, Ricky Sonny
Fuel economy and regulated emissions were measured from eight forty-foot transit buses operated on petroleum diesel and a “B20” blend of 80% diesel fuel and 20% biodiesel by volume. Use of biodiesel is attractive to displace petroleum fuel and reduce an operation's carbon footprint. Usually it is assumed that biodiesel will also reduce particulate matter (PM) emissions relative to those of petroleum diesel. Model years of the vehicles evaluated were newer 2007-08 Gillig low-floor buses, 2005 Gillig Phantom buses, and a 2002 Gillig Phantom bus. Engine technology represented three different emissions standards, and included buses with OEM diesel particulate filters. Each bus was evaluated using two transient speed-time schedules, the Orange County Transit Authority (OCTA) driving schedule which represents moderate speed urban/suburban operation and the Urban Dynamometer Driving Schedule (UDDS) which represents a mix of suburban and higher speed on-highway operation.
2004-10-25
Technical Paper
2004-01-3022
Kuntal A. Vora, Nigel Clark, Ralph D. Nine, Mridul Gautam, W. Scott Wayne, Gregory J. Thompson, Donald W. Lyons
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
2005-04-11
Technical Paper
2005-01-1618
Kuntal A. Vora, Nigel Clark, Mridul Gautam, W. Scott Wayne
When heavy-duty truck emissions rates are expressed in distance-specific units (such as g/mile), average speed and the degree of transient behavior of the vehicle activity can affect the emissions rate. Previous one-dimensional studies have shown some correlation of distance-specific emissions rates between cycles. This paper reviews emissions data sets from the 5-mode CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Schedule, the Heavy Duty Urban Dynamometer Driving Schedule (UDDS) and an inspection and maintenance cycle, known as the AC5080. A heavy-duty chassis dynamometer was used for emissions characterization along with a full-scale dilution tunnel. The vehicle test weights were simulated at 56,000 lbs. Two-dimensional correlations were used to predict the emissions rate on one mode or cycle from the rates of two other modes or cycles.
2005-10-24
Technical Paper
2005-01-3795
Emily D. Pertl, Daniel K. Carder, Franz A. Pertl, Mridul Gautam, James E. Smith
The Federal Test Procedure (FTP) for heavy-duty engines requires the use of a full-flow tunnel based constant volume sampler (CVS). These are costly to build and maintain, and require a large workspace. A small portable micro-dilution system that could be used on-board, for measuring emissions of in-use, heavy-duty vehicles would be an inexpensive alternative. This paper presents the rationale behind the design of such a portable particulate matter measuring system. The presented micro-dilution tunnel operates on the same principle as a full-flow tunnel, however given the reduced size dilution ratios can be more easily controlled with the micro dilution system. The design targets dilution ratios of at least four to one, in accordance with the ISO 8178 requirements. The unique features of the micro-dilution system are the use of only a single pump and a porous sintered stainless steel tube for mixing dilution air and raw exhaust sample.
2005-10-24
Technical Paper
2005-01-3787
Mohan Krishnamurthy, Mridul Gautam
Certification of heavy-duty diesel requires engines to be tested on an engine dynamometer and meet certification in accordance with specific procedures and cycles. However, real-world emissions have been observed to be significantly different from in-laboratory testing. The brake-specific emissions from vehicles are influenced by various operating parameters such as engine speed, load, traffic flow and ambient conditions, hence, vary from the values obtained from the certification tests. In the future, US EPA and other state regulating bodies will require the engine manufacturers to measure in-use emissions from vehicles operating under “real-world” operating conditions. A test vehicle instrumented with West Virginia University's (WVU) Mobile Emissions Measurement System (MEMS), a portable onboard tailpipe emissions measurement system, was used to obtain engine operating conditions, vehicle speed and in-use emission rates of CO2 and NOx.
2005-10-24
Technical Paper
2005-01-3788
Corey M. Strimer, Nigel N. Clark, Daniel Carder, Mridul Gautam, Gregory Thompson
On-board emissions measurement for heavy-duty vehicles has taken on greater significance because new standards now address in-use emissions levels in the USA. Emissions compliance must be shown in a “Not-to-exceed” (NTE) zone that excludes engine operation at low power. An over-the-road 1996 Peterbilt tractor was instrumented with the West Virginia University Mobile Emissions Measurement System (MEMS). The researchers determined how often the truck entered the NTE, and the emissions from the vehicle, as it was driven over different routes and at different test weights (20,740 lb, 34,640 lb, 61,520 lb, and 79,700 lb) The MEMS interfaced with the truck ECU, while also measuring exhaust flowrate, and concentrations of carbon dioxide (CO2) and oxides of nitrogen (NOx) in the exhaust. The four test routes that were employed included varying terrain types in order to simulate a wide range of on-road driving conditions. One route (called the Bruceton route) included a sustained hill climb.
2005-10-24
Technical Paper
2005-01-3789
Emily D. Pertl, Daniel K. Carder, Franz A. Pertl, Mridul Gautam, James E. Smith
The Federal Test Procedure (FTP) for heavy-duty engines requires the use of a full-flow tunnel based constant volume sampler (CVS) which is costly to build and maintain, and requires a large workspace. A portable micro-dilution system that could be used for measuring on-board, in use emissions from heavy duty vehicles would be an inexpensive alternative compared to a full-flow CVS tunnel, as well as requiring significantly less workspace. This paper evaluates such a portable particulate matter measuring system. This micro-dilution tunnel operates on the same principle as a full-flow tunnel, however dilution ratios can be more easily controlled with the micro dilution system. The dilution ratios for the micro-dilution system were maintained at least four to one, as per ISO 8178 requirements, by measuring the mass flow rates of the dilution air and dilute exhaust.
2007-08-05
Technical Paper
2007-01-3626
Nigel Clark, ABM S. Khan, W. Scott Wayne, Mridul Gautam, Gregory J. Thompson, David L. McKain, Donald W. Lyons, Ryan Barnett
Transit agencies across the United States operate bus fleets primarily powered by diesel, natural gas, and hybrid drive systems. Passenger loading affects the power demanded from the engine, which in turn affects distance-specific emissions and fuel consumption. Analysis shows that the nature of bus activity, taking into account the idle time, tire rolling resistance, wind drag, and acceleration energy, influences the way in which passenger load impacts emissions. Emissions performance and fuel consumption from diesel and natural gas powered buses were characterized by the West Virginia University (WVU) Transportable Emissions Testing Laboratory. A comparison matrix for all three bus technologies included three common driving cycles (the Braunschweig Cycle, the OCTA Cycle, and the ADEME-RATP Paris Cycle). Each bus was tested at three different passenger loading conditions (empty weight, half weight, and full weight).
2009-04-20
Technical Paper
2009-01-1183
Raffaello Ardanese, Michelangelo Ardanese, Marc C. Besch, Theodore R. Adams, Arvind Thiruvengadam, Benjamin C. Shade, Mridul Gautam, Adewale Oshinuga, Matt Miyasato
The temporary deactivation of the selective catalytic reduction (SCR) device due to malfunction requires the engine control to engage multiple engine-out calibrations. Further, it is expected that emitted particles will be different in composition, size and morphology when an engine, which meets the 2010 particulate matter (PM) gravimetric limits, is programmed with multiple maps. This study investigated the correlation between SCR-out/engine-out PM emissions from an 11-liter Volvo engine. Measurement of PM concentrations and size distributions were conducted under steady state and transient cycles. Ion Chromatograph analysis on gravimetric filters at the SCR-out has revealed the presence of sulfates. Two different PM size-distributions were generated over a single engine test mode in the accumulation mode region with the aid of a design of experiment (DOE) tool. The SCR-out PM size distributions were found to correlate with the two engine-out distributions.
2007-01-23
Technical Paper
2007-01-0054
Nigel Clark, W. Scott Wayne, ABM S. Khan, Donald W. Lyons, Mridul Gautam, David L. McKain, Gregory J. Thompson, Ryan Barnett
Although diesel engines still power most of the heavy-duty transit buses in the United States, many major cities are also operating fleets where a significant percentage of buses is powered by lean-burn natural gas engines. Emissions from these buses are often expressed in distance-specific units of grams per mile (g/mile) or grams per kilometer (g/km), but the driving cycle or route employed during emissions measurement has a strong influence on the reported results. A driving cycle that demands less energy per unit distance than others results in higher fuel economy and lower distance-specific oxides of nitrogen emissions. In addition to energy per unit distance, the degree to which the driving cycle is transient in nature can also affect emissions.
2007-01-23
Technical Paper
2007-01-0060
Yuebin Wu, Nigel Clark, Daniel Carder, Gregory J. Thompson, Mridul Gautam, Donald W. Lyons
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
2006-10-16
Technical Paper
2006-01-3395
Nigel Clark, Mridul Gautam, W. Scott Wayne, Gregory J. Thompson, Ralph D. Nine, Donald W. Lyons, Thomas Buffamonte, Shuhong Xu, Hector Maldonado
Heavy duty diesel vehicle (HDDV) emissions are known to affect air quality, but few studies have quantified the real-world contribution to the inventory. The objective of this study was to provide data that may enable ambient emissions investigators to m,odel the air quality more accurately. The 25 vehicles reported in this paper are from the first phase of a program to determine representative regulated emissions from Heavy Heavy-Duty Diesel Trucks (HHDDT) operating in Southern California. Emissions data were gathered using a chassis dynamometer, full flow dilution tunnel, and research grade analyzers. The subject program employed two truck test weights and four new test modes (one was idle operation), in addition to the Urban Dynamometer Driving Schedule (UDDS), and the AC50/80 cycle. The reason for such a broad test cycle scope was to determine thoroughly how HHDDT emissions are influenced by operating cycle to improve accuracy of models.
2006-10-16
Technical Paper
2006-01-3393
Gregory J. Thompson, John C. Gibble, Nigel Clark, Mridul Gautam
The 1998 Consent Decrees between the settling heavy-duty diesel engine manufacturers and the United States Government require the engine manufacturer to perform in-use emissions testing to evaluate their engine designs and emissions when the vehicle is placed into service. This additional requirement will oblige the manufacturer to account for real-world conditions when designing engines and engine control algorithms and include driving conditions, ambient conditions, and fuel properties in addition to the engine certification test procedures. Engine operation and ambient conditions can be designed into the engine control algorithm. However, there will most likely be no on-board determination of fuel properties or composition in the near future. Therefore, the engine manufacturer will need to account for varying fuel properties when developing the engine control algorithm for when in-use testing is performed.
2005-10-24
Technical Paper
2005-01-3799
Mohan Krishnamurthy, Mridul Gautam
Beginning 2007, heavy-duty engine certification would require that in-use emissions from vehicles be measured under ‘real-world’ operating conditions using on-board measurement devices. An on-board portable emissions measurement system called Mobile Emissions Measurement System (MEMS) was developed at West Virginia University (WVU) to record in-use, continuous and brake-specific emissions from heavy-duty diesel-powered vehicles. The objective of this paper is to present a preliminary development of a test data quality assurance methodology for emissions measured using the any portable emissions measurement system (PEMS). The first stage of the methodology requires ensuring the proper operation of the different sensors and transducers during data collection. The second stage is data synchronization and pre-processing. The next stage is systematic checking of possible errors from transducers and sensors.
2005-05-11
Technical Paper
2005-01-2153
Shuhong Xu, Nigel N. Clark, Mridul Gautam, W. Scott Wayne
The Tapered Element Oscillating Microbalance (TEOM) measures captured particle mass continuously on a small filter held on an oscillating element. In addition to traditional filter-based particulate matter (PM) measurement, a TEOM was used to characterize PM from the dilute exhaust of trucks examined in two phases (Phase 1.5 and Phase 2) of the Coordinating Research Council (CRC) Heavy-Duty Vehicle Emissions Inventory Project E-55/E-59. Test schedules employed were the Heavy Heavy-Duty Diesel Truck (HHDDT) test schedule that consists of four modes (Idle, Creep, Transient and Cruise), the HHDDT Short (HHDDT_S) which represents high-speed freeway operation, and the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS). TEOM results were on average 6% lower than those from traditional particulate filter weighing. Data (in units of g/cycle) were examined by plotting cycle-averaged TEOM mass against filter mass. Regression (R2) values for these plots were from 0.88 to 0.99.
2004-10-25
Technical Paper
2004-01-2904
Nigel Clark, Mridul Gautam, W. Scott Wayne, Wesley Riddle, Ralph D. Nine, Donald W. Lyons, Shuhong Xu
Repeatable measurement of real-world heavy-duty diesel truck emissions requires the use of a chassis dynamometer with a test schedule that reasonably represents actual truck use. A new Heavy Heavy-Duty Diesel Truck (HHDDT) schedule has been created that consists of four modes, termed Idle, Creep, Transient and Cruise. The effect of driving style on emissions from the Transient Mode was studied by driving a 400 hp Mack tractor at 56,000 lbs. test weight in fashions termed “Medium”, “Good”, “Bad”, “Casual” and “Aggressive”. Although there were noticeable differences in the actual speed vs. time trace for these five styles, emissions of the important species oxides of nitrogen (NOx) and particulate matter (PM), varied little with a coefficient of variation (COV) of 5.13% on NOX and 10.68% on PM. Typical NOx values for the HHDDT Transient mode ranged from 19.9 g/mile to 22.75 g/mile. The Transient mode which was the most difficult mode to drive, proved to be repeatable.
2007-04-16
Technical Paper
2007-01-1600
Dustin L. McIntyre, Steven D. Woodruff, Steven W. Richardson, Michael H. McMillian, Mridul Gautam
To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.
2008-04-14
Journal Article
2008-01-1301
Benjamin C. Shade, Daniel K. Carder, Gregory J. Thompson, Mridul Gautam
A work-based window method has been developed to calculate in-use brake-specific oxides of nitrogen (NOx) emissions for all engine speeds and engine loads. During an in-use test, engine speed and engine torque are read from the engine's electronic control unit, and along with time, are used to determine instantaneous engine power. Instantaneous work is calculated using this power and the time differential in the data collection. Work is then summed until the target amount of work is accumulated. The emissions levels are then calculated for that window of work. It was determined that a work window equal to the theoretical Federal Test Procedure (FTP) cycle work best provides a means of comparison to the FTP certification standard. Also, a failure criterion has been established based on the average amount of power generated in the work window and the amount of time required to achieve the target work window to determine if a particular work window is valid.
1995-02-01
Technical Paper
951016
Nigel N. Clark, J. Todd Messer, David L. McKain, Wenguang Wang, Reda M. Bata, Mridul Gautam, Donald W. Lyons
Emissions from light duty vehicles have traditionally been measured using a chassis dynamometer, while heavy duty testing has been based on engine dynamometers. However, the need for in-use vehicle emissions data has led to the development of two transportable heavy duty chassis dynamometers capable of testing buses and heavy trucks. A test cycle has been developed for Class 8 trucks, which typically have unsyncronized transmissions. This test cycle has five peaks, each consisting of an acceleration, cruise period, and deceleration, with speeds and acceleration requirements that can be met by virtually all vehicles in common service. Termed the “WVU 5 peak truck test”, this 8 km (5 mile) cycle has been used to evaluate the emissions from diesel and ethanol powered over-the-road tractors and from diesel and ethanol powered snow plows, all with Detroit Diesel 6V92 engines.
1999-04-27
Technical Paper
1999-01-2251
Nigel Clark, Mridul Gautam, Donald Lyons, Chris Atkinson, Wenwei Xie, Paul Norton, Keith Vertin, Stephen Goguen, James Eberhardt
Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California #2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NOx) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state #2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without.
1999-05-03
Technical Paper
1999-01-1469
Nigel N. Clark, Mridul Gautam, Byron L. Rapp, Donald W. Lyons, Michael S. Graboski, Robert L. McCormick, Teresa L. Alleman, Paul Norton
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses.
1999-05-03
Technical Paper
1999-01-1519
Mridul Gautam, Karthik Chitoor, S. Balla, Michael Keane
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
1999-05-03
Technical Paper
1999-01-1512
Paul Norton, Keith Vertin, Nigel N. Clark, Donald W. Lyons, Mridul Gautam, Stephen Goguen, James Eberhardt
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Viewing 1 to 30 of 57

Filter

  • Range:
    to:
  • Year: